|
import csv |
|
import random |
|
import string |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{koto-etal-2022-cloze, |
|
title = "Cloze Evaluation for Deeper Understanding of Commonsense Stories in {I}ndonesian", |
|
author = "Koto, Fajri and |
|
Baldwin, Timothy and |
|
Lau, Jey Han", |
|
editor = "Bosselut, Antoine and |
|
Li, Xiang and |
|
Lin, Bill Yuchen and |
|
Shwartz, Vered and |
|
Majumder, Bodhisattwa Prasad and |
|
Lal, Yash Kumar and |
|
Rudinger, Rachel and |
|
Ren, Xiang and |
|
Tandon, Niket and |
|
Zouhar, Vil{\'e}m", |
|
booktitle = "Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)", |
|
month = may, |
|
year = "2022", |
|
address = "Dublin, Ireland", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.csrr-1.2", |
|
doi = "10.18653/v1/2022.csrr-1.2", |
|
pages = "8--16", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "indo_story_cloze" |
|
|
|
_DESCRIPTION = """ |
|
A Story Cloze Test framework in Indonesian. A story in our dataset consists of four-sentence premise, one-sentence |
|
correct ending, and one-sentence incorrect ending. In total, we have created 2,325 Indonesian stories with the |
|
train/dev/test split 1,000/200/1,135. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/indolem/indo_story_cloze" |
|
|
|
_LANGUAGES = ["ind"] |
|
|
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://huggingface.co/datasets/indolem/indo_story_cloze/resolve/main/train.csv", |
|
"dev": "https://huggingface.co/datasets/indolem/indo_story_cloze/resolve/main/dev.csv", |
|
"test": "https://huggingface.co/datasets/indolem/indo_story_cloze/resolve/main/test.csv", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndoStoryClozeDataset(datasets.GeneratorBasedBuilder): |
|
"""IndoStoryCloze is a Story Cloze dataset in Indonesian.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_qa", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"sentence-1": datasets.Value("string"), |
|
"sentence-2": datasets.Value("string"), |
|
"sentence-3": datasets.Value("string"), |
|
"sentence-4": datasets.Value("string"), |
|
"correct_ending": datasets.Value("string"), |
|
"incorrect_ending": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir, "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_dir, "split": "dev"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
if self.config.schema == "source": |
|
data = csv.DictReader(open(filepath[split], newline="", encoding="utf-8")) |
|
for i, row in enumerate(data): |
|
yield i, { |
|
"sentence-1": row["Kalimat-1"], |
|
"sentence-2": row["Kalimat-2"], |
|
"sentence-3": row["Kalimat-3"], |
|
"sentence-4": row["Kalimat-4"], |
|
"correct_ending": row["Correct Ending"], |
|
"incorrect_ending": row["Incorrect Ending"], |
|
} |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
data = csv.DictReader(open(filepath[split], newline="", encoding="utf-8")) |
|
|
|
def build_question(line): |
|
|
|
|
|
sentences = [] |
|
for k in ["Kalimat-1", "Kalimat-2", "Kalimat-3", "Kalimat-4"]: |
|
if line[k].strip()[-1] not in string.punctuation: |
|
sentences.append(line[k] + ".") |
|
else: |
|
sentences.append(line[k]) |
|
return " ".join(sentences) |
|
|
|
for i, row in enumerate(data): |
|
yield i, { |
|
"id": str(i), |
|
"question_id": str(i), |
|
"document_id": str(i), |
|
"question": build_question(row), |
|
"type": "multiple_choice", |
|
|
|
"choices": [row["Correct Ending"], row["Incorrect Ending"]] if random.randint(0, 1) == 0 else [row["Incorrect Ending"], row["Correct Ending"]], |
|
"context": "", |
|
"answer": [row["Correct Ending"]], |
|
"meta": {}, |
|
} |
|
|