|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" IndoNLU NERGrit Dataset """ |
|
|
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_conll_data |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{wilie2020indonlu, |
|
title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, |
|
author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, |
|
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, |
|
year={2020} |
|
} |
|
@online{nergrit2019, |
|
title={NERGrit Corpus}, |
|
author={NERGrit Developers}, |
|
year={2019}, |
|
url={https://github.com/grit-id/nergrit-corpus} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indonlu_nergrit" |
|
_DESCRIPTION = """\ |
|
This NER dataset is taken from the Grit-ID repository, and the labels are spans in IOB chunking representation. |
|
The dataset consists of three kinds of named entity tags, PERSON (name of person), PLACE (name of location), and |
|
ORGANIZATION (name of organization). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/grit-id/nergrit-corpus" |
|
_LICENSE = "MIT" |
|
_URL_ROOT = "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nergrit_ner-grit" |
|
_URLs = { |
|
"train": f"{_URL_ROOT}/train_preprocess.txt", |
|
"validation": f"{_URL_ROOT}/valid_preprocess.txt", |
|
"test": f"{_URL_ROOT}/test_preprocess.txt", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndonluNergritDataset(datasets.GeneratorBasedBuilder): |
|
"""Indonesian Named Entity Recognition from https://github.com/grit-id/nergrit-corpus.""" |
|
|
|
label_classes = ["I-PERSON", "B-ORGANISATION", "I-ORGANISATION", "B-PLACE", "I-PLACE", "O", "B-PERSON"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="indonlu_nergrit_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="IndoNLU NERGrit source schema", |
|
schema="source", |
|
subset_id="indonlu_nergrit", |
|
), |
|
SEACrowdConfig( |
|
name="indonlu_nergrit_seacrowd_seq_label", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="IndoNLU NERGrit Nusantara schema", |
|
schema="seacrowd_seq_label", |
|
subset_id="indonlu_nergrit", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indonlu_nergrit_source" |
|
|
|
def _info(self): |
|
features = None |
|
if self.config.schema == "source": |
|
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]}) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"])) |
|
validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"])) |
|
test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"])) |
|
data_files = { |
|
"train": train_tsv_path, |
|
"validation": validation_tsv_path, |
|
"test": test_tsv_path, |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_files["validation"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path): |
|
conll_dataset = load_conll_data(filepath) |
|
|
|
if self.config.schema == "source": |
|
for index, row in enumerate(conll_dataset): |
|
ex = {"index": str(index), "tokens": row["sentence"], "ner_tag": row["label"]} |
|
yield index, ex |
|
elif self.config.schema == "seacrowd_seq_label": |
|
for index, row in enumerate(conll_dataset): |
|
ex = {"id": str(index), "tokens": row["sentence"], "labels": row["label"]} |
|
yield index, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|