|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{IndoQA, |
|
author = {{Jakarta Artificial Intelligence Research}} |
|
title = {IndoQA: Building Indonesian QA dataset}, |
|
year = {2023} |
|
url = {https://huggingface.co/datasets/jakartaresearch/indoqa} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "indoqa" |
|
|
|
_DESCRIPTION = """\ |
|
IndoQA is a monolingual question-answering dataset of Indonesian language (ind). |
|
It comprises 4,413 examples with 3:1 split of training and validation sets. |
|
The datasets consists of a context paragraph along with an associated question-answer pair. |
|
""" |
|
|
|
_HOMEPAGE = "https://jakartaresearch.com/" |
|
_LICENSE = Licenses.CC_BY_ND_4_0.value |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://drive.google.com/uc?id=1ND893H5x2gaPRRMJVajQ4hgqpopHoD0u", |
|
"validation": "https://drive.google.com/uc?id=1mq_foV72riXb1KVBirJzTFZEe7oa8f4f", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndoQADataset(datasets.GeneratorBasedBuilder): |
|
"""IndoQA: A monolingual Indonesian question-answering dataset comprises 4,413 instances of QA-pair with context.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_qa", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"span_start": datasets.Value("int32"), |
|
"span_end": datasets.Value("int32"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
features["meta"]["span_start"] = datasets.Value("int32") |
|
features["meta"]["span_end"] = datasets.Value("int32") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_paths = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_paths["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_paths["validation"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, "r", encoding="utf-8") as file: |
|
datas = json.load(file) |
|
|
|
if self.config.schema == "source": |
|
for key, data in enumerate(datas): |
|
yield key, data |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
for key, data in enumerate(datas): |
|
yield key, { |
|
"id": f'{data["id"]}', |
|
"question_id": data["id"], |
|
"document_id": "", |
|
"question": data["question"], |
|
"type": data["category"], |
|
"choices": [], |
|
"context": data["context"], |
|
"answer": [data["answer"]], |
|
"meta": { |
|
"span_start": data["span_start"], |
|
"span_end": data["span_end"], |
|
}, |
|
} |
|
|