File size: 9,937 Bytes
3472b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import json
import os

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from zipfile import ZipFile

_CITATION = """\
@inproceedings{sakti-tcast-2008,
    title = "Development of {I}ndonesian Large Vocabulary Continuous Speech Recognition System within {A-STAR} Project",
    author = "Sakti, Sakriani and Kelana, Eka and Riza, Hammam and Sakai, Shinsuke and Markov, Konstantin and Nakamura, Satoshi",
    booktitle = "Proc. IJCNLP Workshop on Technologies and Corpora for Asia-Pacific Speech Translation (TCAST)",
    year = "2008",
    pages = "19--24"
    address = "Hyderabad, India"
}


@inproceedings{sakti-icslp-2004,
    title = "Indonesian Speech Recognition for Hearing and Speaking Impaired People",
    author = "Sakti, Sakriani and Hutagaol, Paulus and Arman, Arry Akhmad and Nakamura, Satoshi",
    booktitle = "Proc. International Conference on Spoken Language Processing (INTERSPEECH - ICSLP)",
    year = "2004",
    pages = "1037--1040"
    address = "Jeju Island, Korea"
}

@article{sakti-s2st-csl-2013,
    title = "{A-STAR}: Toward Tranlating Asian Spoken Languages",
    author = "Sakti, Sakriani and Paul, Michael and Finch, Andrew and Sakai, Shinsuke and Thang, Tat Vu, and Kimura, Noriyuki 
    and Hori, Chiori and Sumita, Eiichiro and Nakamura, Satoshi and Park, Jun and Wutiwiwatchai, Chai and Xu, Bo and Riza, Hammam 
    and Arora, Karunesh and Luong, Chi Mai and Li, Haizhou",
    journal = "Special issue on Speech-to-Speech Translation, Computer Speech and Language Journal",
    volume = "27",
    number ="2",
    pages = "509--527",
    year = "2013",
    publisher = "Elsevier"
}
"""

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "indspeech_teldialog_lvcsr"

_DESCRIPTION = """
INDspeech_TELDIALOG_LVCSR is one of the first Indonesian speech datasets for large vocabulary continuous speech recognition (LVCSR) based on telephon application. R&D Division of PT Telekomunikasi Indonesia developed the data in 2005-2006, in collaboration with Advanced Telecommunication Research Institute International (ATR) Japan, as the continuation of the Asia-Pacific Telecommunity (APT) project [Sakti et al., 2004]. It has also been successfully used for developing Indonesian LVCSR in the Asian speech translation advanced research (A-STAR) project [Sakti et al., 2013].
"""

_HOMEPAGE = "https://github.com/s-sakti/data_indsp_teldialog_lvcsr"

_LICENSE = "CC-BY-NC-SA 4.0"


URL_TEMPLATE = {
    "lst": "https://raw.githubusercontent.com/s-sakti/data_indsp_teldialog_lvcsr/main/lst/",  # transcript.lst
    "speech": "https://github.com/s-sakti/data_indsp_teldialog_lvcsr/raw/main/speech/",  # Ind3/Ind304.zip~Ind400.zip
    "text": "https://github.com/s-sakti/data_indsp_teldialog_lvcsr/raw/main/text/",  # all_transcript.zip
}

_URLS = {
    "lst_spk_Ind": [URL_TEMPLATE["lst"] + "spk_Ind" + str(n) + ".lst" for n in range(0, 4)],
    "lst_spk_all": URL_TEMPLATE["lst"] + "spk_all.lst",
    "lst_spk_test": URL_TEMPLATE["lst"] + "spk_test.lst",
    "lst_spk_train": URL_TEMPLATE["lst"] + "spk_train.lst",
    "lst_transcript": URL_TEMPLATE["lst"] + "transcript.lst",
    "speech_Ind": [URL_TEMPLATE["speech"] + "Ind" + str(n) + "/Ind" + str(p).zfill(3) + ".zip" for n in range(0, 4) for p in range(n * 100 + 1, n * 100 + 101)],
    "transcript_all": URL_TEMPLATE["text"] + "all_transcript.zip",
    "transcript_spk": URL_TEMPLATE["text"] + "spk_transcript.zip",
}

_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class IndSpeechTelDialLVCSR(datasets.GeneratorBasedBuilder):
    """INDspeech_TELDIALOG_LVCSR is one of the first Indonesian speech datasets for large vocabulary continuous speech recognition (LVCSR) based on telephon application. R&D Division of PT Telekomunikasi Indonesia developed the data in 2005-2006, in collaboration with Advanced Telecommunication Research Institute International (ATR) Japan, as the continuation of the Asia-Pacific Telecommunity (APT) project [Sakti et al., 2004]. It has also been successfully used for developing Indonesian LVCSR in the Asian speech translation advanced research (A-STAR) project [Sakti et al., 2013]."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
    
    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"indspeech_teldialog_lvcsr_source",
            version=_SOURCE_VERSION,
            description="indspeech_teldialog_lvcsr source schema",
            schema="source",
            subset_id=f"indspeech_teldialog_lvcsr"
        ),
        SEACrowdConfig(
            name=f"indspeech_teldialog_lvcsr_seacrowd_sptext",
            version=_SOURCE_VERSION,
            description="indspeech_teldialog_lvcsr Nusantara schema",
            schema="seacrowd_sptext",
            subset_id=f"indspeech_teldialog_lvcsr"
        ),]
            
    DEFAULT_CONFIG_NAME = "indspeech_teldialog_lvcsr_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
               {
                   "id": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
               }
            )

        elif self.config.schema == "seacrowd_sptext":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
        )

    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        
        audio_files_dir = []
        for aud_url in _URLS["speech_Ind"]:
            onespeaker_folder = dl_manager.download_and_extract(aud_url)
            audio_files_dir.append(Path(os.path.join(onespeaker_folder, aud_url.split("/")[-1][:-4])))
            
        text_path = Path(dl_manager.download_and_extract(_URLS["lst_transcript"]))
        speak_list = Path(dl_manager.download_and_extract(_URLS["lst_spk_all"]))
        train_list = Path(dl_manager.download_and_extract(_URLS["lst_spk_train"]))
        test_list = Path(dl_manager.download_and_extract(_URLS["lst_spk_test"]))
        
        
          
        speaker_num2id = {}
        with open(speak_list) as f:
            for l in f.readlines():
                l = l.strip()
                speaker_num2id.update({l.split("_")[0]: l})
         
            
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,

                gen_kwargs={
                    "audio_files_dir": audio_files_dir,
                    "text_path": text_path,
                    "split": "train",
                    "file_list": train_list,
                    "speaker_num2id": speaker_num2id
                },
            ),
            
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "audio_files_dir": audio_files_dir,
                    "text_path": text_path,
                    "split": "test",
                    "file_list": test_list,
                    "speaker_num2id": speaker_num2id
                },
            )
        ]
    

    def _generate_examples(self, audio_files_dir: List, text_path: Path, split: str, file_list: Path, speaker_num2id: Dict) -> Tuple[int, Dict]:
        speaker_nums = []
        with open(file_list) as f:
            for l in f.readlines():
                speaker_nums.append(l.strip())
                
                
        sentid = {}
        with open(text_path) as f:
            for i, l in enumerate(f.readlines()):
                sentid.update({"appl_"+"%04d" % i: l.strip()})
                
                
        for wav_one_speaker_folder in audio_files_dir: #XXXX/Ind0/Ind001
            if wav_one_speaker_folder.name in speaker_nums:
                speaker_num = wav_one_speaker_folder.name #Ind001
                speaker_id = speaker_num2id[speaker_num] #Ind001_F_B

                for wave_file in os.listdir(wav_one_speaker_folder):
                    audio_id = wave_file[:-4]
                    sentence_id = "appl_"+wave_file[:-4].split('_')[-1]
                    text = sentid[sentence_id]
                    wav_path = os.path.join(wav_one_speaker_folder, wave_file)

                    if self.config.schema == "source":
                        ex = {
                            "id": audio_id,
                            "speaker_id": speaker_id,
                            "path": wav_path,
                            "audio": wav_path,
                            "text": text,
                        }
                        yield audio_id, ex

                    elif self.config.schema == "seacrowd_sptext":
                        ex = {
                            "id": audio_id,
                            "speaker_id": speaker_id,
                            "path": wav_path,
                            "audio": wav_path,
                            "text": text,
                            "metadata": {
                                "speaker_age": None,
                                "speaker_gender": speaker_id.split("_")[1],
                            }
                        }
                        yield audio_id, ex