holylovenia
commited on
Commit
•
9231f99
1
Parent(s):
814e7d3
Upload inset_lexicon.py with huggingface_hub
Browse files- inset_lexicon.py +129 -0
inset_lexicon.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from nusacrowd.utils import schemas
|
8 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
9 |
+
from nusacrowd.utils.constants import Tasks
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{inproceedings,
|
13 |
+
author = {Koto, Fajri and Rahmaningtyas, Gemala},
|
14 |
+
year = {2017},
|
15 |
+
month = {12},
|
16 |
+
pages = {},
|
17 |
+
title = {InSet Lexicon: Evaluation of a Word List for Indonesian Sentiment Analysis in Microblogs},
|
18 |
+
doi = {10.1109/IALP.2017.8300625}
|
19 |
+
}
|
20 |
+
"""
|
21 |
+
|
22 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
23 |
+
_LOCAL = False
|
24 |
+
|
25 |
+
_DATASETNAME = "inset_lexicon"
|
26 |
+
|
27 |
+
_DESCRIPTION = """\
|
28 |
+
InSet, an Indonesian sentiment lexicon built to identify written opinion and categorize it into positive or negative opinion,
|
29 |
+
which could be utilized to analyze public sentiment towards particular topic, event, or product. Composed using collection
|
30 |
+
of words from Indonesian tweet, InSet was constructed by manually weighting each words and enhanced by adding stemming and synonym set
|
31 |
+
"""
|
32 |
+
|
33 |
+
_HOMEPAGE = "https://www.researchgate.net/publication/321757985_InSet_Lexicon_Evaluation_of_a_Word_List_for_Indonesian_Sentiment_Analysis_in_Microblogs"
|
34 |
+
_LICENSE = "Unknown"
|
35 |
+
_URLS = {_DATASETNAME: "https://github.com/fajri91/InSet/archive/refs/heads/master.zip"}
|
36 |
+
|
37 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
38 |
+
_SOURCE_VERSION = "1.0.0"
|
39 |
+
_NUSANTARA_VERSION = "1.0.0"
|
40 |
+
|
41 |
+
|
42 |
+
class InsetLexicon(datasets.GeneratorBasedBuilder):
|
43 |
+
"""InSet, an Indonesian sentiment lexicon built to identify written opinion and categorize it into positive or negative opinion"""
|
44 |
+
|
45 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
46 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
47 |
+
|
48 |
+
BUILDER_CONFIGS = [
|
49 |
+
NusantaraConfig(
|
50 |
+
name="inset_lexicon_source",
|
51 |
+
version=SOURCE_VERSION,
|
52 |
+
description="Inset Lexicon source schema",
|
53 |
+
schema="source",
|
54 |
+
subset_id="inset_lexicon",
|
55 |
+
),
|
56 |
+
NusantaraConfig(
|
57 |
+
name="inset_lexicon_nusantara_text",
|
58 |
+
version=NUSANTARA_VERSION,
|
59 |
+
description="Inset Lexicon Nusantara schema",
|
60 |
+
schema="nusantara_text",
|
61 |
+
subset_id="inset_lexicon",
|
62 |
+
),
|
63 |
+
]
|
64 |
+
|
65 |
+
DEFAULT_CONFIG_NAME = "inset_lexicon_source"
|
66 |
+
|
67 |
+
def _info(self) -> datasets.DatasetInfo:
|
68 |
+
if self.config.schema == "source":
|
69 |
+
features = datasets.Features({"word": datasets.Value("string"), "weight": datasets.Value("string")})
|
70 |
+
elif self.config.schema == "nusantara_text":
|
71 |
+
labels = list(range(-5, 6, 1))
|
72 |
+
labels = [str(label) for label in labels]
|
73 |
+
features = schemas.text_features(labels)
|
74 |
+
|
75 |
+
return datasets.DatasetInfo(
|
76 |
+
description=_DESCRIPTION,
|
77 |
+
features=features,
|
78 |
+
homepage=_HOMEPAGE,
|
79 |
+
license=_LICENSE,
|
80 |
+
citation=_CITATION,
|
81 |
+
)
|
82 |
+
|
83 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
84 |
+
"""Returns SplitGenerators."""
|
85 |
+
# Dataset does not have predetermined split, putting all as TRAIN
|
86 |
+
urls = _URLS[_DATASETNAME]
|
87 |
+
base_dir = Path(dl_manager.download_and_extract(urls)) / "InSet-master"
|
88 |
+
positive_df = pd.read_csv(base_dir / "positive.tsv", sep="\t")
|
89 |
+
negative_df = pd.read_csv(base_dir / "negative.tsv", sep="\t")
|
90 |
+
merged_df = pd.concat([positive_df, negative_df]).reset_index(drop=True)
|
91 |
+
merged_data_dir = base_dir / "dataset.tsv"
|
92 |
+
merged_df.to_csv(merged_data_dir, sep="\t")
|
93 |
+
|
94 |
+
data_files = {"train": merged_data_dir}
|
95 |
+
|
96 |
+
return [
|
97 |
+
datasets.SplitGenerator(
|
98 |
+
name=datasets.Split.TRAIN,
|
99 |
+
gen_kwargs={
|
100 |
+
"filepath": data_files["train"],
|
101 |
+
"split": "train",
|
102 |
+
},
|
103 |
+
),
|
104 |
+
]
|
105 |
+
|
106 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
107 |
+
"""Yields examples as (key, example) tuples."""
|
108 |
+
# Dataset does not have id, using row index as id
|
109 |
+
df = pd.read_csv(filepath, sep="\t", encoding="ISO-8859-1")
|
110 |
+
df.columns = ["id", "word", "weight"]
|
111 |
+
|
112 |
+
if self.config.schema == "source":
|
113 |
+
for row in df.itertuples():
|
114 |
+
ex = {
|
115 |
+
"word": row.word,
|
116 |
+
"weight": str(int(row.weight)),
|
117 |
+
}
|
118 |
+
yield row.id, ex
|
119 |
+
|
120 |
+
elif self.config.schema == "nusantara_text":
|
121 |
+
for row in df.itertuples():
|
122 |
+
ex = {
|
123 |
+
"id": str(row.id),
|
124 |
+
"text": row.word,
|
125 |
+
"label": str(int(row.weight)),
|
126 |
+
}
|
127 |
+
yield row.id, ex
|
128 |
+
else:
|
129 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|