from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks _CITATION = """\ @inproceedings{inproceedings, author = {Koto, Fajri and Rahmaningtyas, Gemala}, year = {2017}, month = {12}, pages = {}, title = {InSet Lexicon: Evaluation of a Word List for Indonesian Sentiment Analysis in Microblogs}, doi = {10.1109/IALP.2017.8300625} } """ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _DATASETNAME = "inset_lexicon" _DESCRIPTION = """\ InSet, an Indonesian sentiment lexicon built to identify written opinion and categorize it into positive or negative opinion, which could be utilized to analyze public sentiment towards particular topic, event, or product. Composed using collection of words from Indonesian tweet, InSet was constructed by manually weighting each words and enhanced by adding stemming and synonym set """ _HOMEPAGE = "https://www.researchgate.net/publication/321757985_InSet_Lexicon_Evaluation_of_a_Word_List_for_Indonesian_Sentiment_Analysis_in_Microblogs" _LICENSE = "Unknown" _URLS = {_DATASETNAME: "https://github.com/fajri91/InSet/archive/refs/heads/master.zip"} _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class InsetLexicon(datasets.GeneratorBasedBuilder): """InSet, an Indonesian sentiment lexicon built to identify written opinion and categorize it into positive or negative opinion""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="inset_lexicon_source", version=SOURCE_VERSION, description="Inset Lexicon source schema", schema="source", subset_id="inset_lexicon", ), SEACrowdConfig( name="inset_lexicon_seacrowd_text", version=SEACROWD_VERSION, description="Inset Lexicon Nusantara schema", schema="seacrowd_text", subset_id="inset_lexicon", ), ] DEFAULT_CONFIG_NAME = "inset_lexicon_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features({"word": datasets.Value("string"), "weight": datasets.Value("string")}) elif self.config.schema == "seacrowd_text": labels = list(range(-5, 6, 1)) labels = [str(label) for label in labels] features = schemas.text_features(labels) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" # Dataset does not have predetermined split, putting all as TRAIN urls = _URLS[_DATASETNAME] base_dir = Path(dl_manager.download_and_extract(urls)) / "InSet-master" positive_df = pd.read_csv(base_dir / "positive.tsv", sep="\t") negative_df = pd.read_csv(base_dir / "negative.tsv", sep="\t") merged_df = pd.concat([positive_df, negative_df]).reset_index(drop=True) merged_data_dir = base_dir / "dataset.tsv" merged_df.to_csv(merged_data_dir, sep="\t") data_files = {"train": merged_data_dir} return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_files["train"], "split": "train", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" # Dataset does not have id, using row index as id df = pd.read_csv(filepath, sep="\t", encoding="ISO-8859-1") df.columns = ["id", "word", "weight"] if self.config.schema == "source": for row in df.itertuples(): ex = { "word": row.word, "weight": str(int(row.weight)), } yield row.id, ex elif self.config.schema == "seacrowd_text": for row in df.itertuples(): ex = { "id": str(row.id), "text": row.word, "label": str(int(row.weight)), } yield row.id, ex else: raise ValueError(f"Invalid config: {self.config.name}")