holylovenia commited on
Commit
d951bbb
1 Parent(s): 546ab14

Upload lazada_review_filipino.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. lazada_review_filipino.py +147 -0
lazada_review_filipino.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Filipino-Tagalog Product Reviews Sentiment Analysis
18
+ This is a machine learning dataset that can be used to analyze the sentiment of product reviews in Filipino-Tagalog.
19
+ The data is scraped from lazada Philippines.
20
+ """
21
+ import os
22
+ from pathlib import Path
23
+ from typing import Dict, List, Tuple
24
+ import json
25
+
26
+ import datasets
27
+
28
+ from seacrowd.utils import schemas
29
+ from seacrowd.utils.configs import SEACrowdConfig
30
+ from seacrowd.utils.constants import Tasks, Licenses
31
+
32
+
33
+ _CITATION = """@misc{github,
34
+ author={Eric Echemane},
35
+ title={Filipino-Tagalog-Product-Reviews-Sentiment-Analysis},
36
+ year={2022},
37
+ url={https://github.com/EricEchemane/Filipino-Tagalog-Product-Reviews-Sentiment-Analysis/tree/main},
38
+ }
39
+ """
40
+
41
+ _DATASETNAME = "lazada_review_filipino"
42
+
43
+
44
+ _DESCRIPTION = """Filipino-Tagalog Product Reviews Sentiment Analysis
45
+ This is a machine learning dataset that can be used to analyze the sentiment of product reviews in Filipino-Tagalog.
46
+ The dataset contains over 900+ weakly annotated Filipino reviews scraped from the Lazada Philippines platform.
47
+ Each review is associated with a five star point rating where one is the lowest and five is the highest.
48
+ """
49
+
50
+
51
+ _HOMEPAGE = "https://github.com/EricEchemane/Filipino-Tagalog-Product-Reviews-Sentiment-Analysis"
52
+
53
+ _LANGUAGES = ['fil', 'tgl']
54
+
55
+ _LICENSE = Licenses.UNKNOWN.value
56
+
57
+
58
+ _LOCAL = False
59
+
60
+
61
+
62
+ _URLS = {
63
+ _DATASETNAME: "https://raw.githubusercontent.com/EricEchemane/Filipino-Tagalog-Product-Reviews-Sentiment-Analysis/main/data/reviews.json",
64
+ }
65
+
66
+
67
+ _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
68
+
69
+
70
+ _SOURCE_VERSION = "1.0.0"
71
+
72
+ _SEACROWD_VERSION = "2024.06.20"
73
+
74
+
75
+
76
+ class LazadaReviewFilipinoDataset(datasets.GeneratorBasedBuilder):
77
+ """The dataset contains over 900+ weakly annotated Filipino reviews scraped from the Lazada Philippines platform"""
78
+
79
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
80
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
81
+
82
+
83
+ BUILDER_CONFIGS = [
84
+ SEACrowdConfig(
85
+ name="lazada_review_filipino_source",
86
+ version=SOURCE_VERSION,
87
+ description="lazada reviews in filipino source schema",
88
+ schema="source",
89
+ subset_id="lazada_review_filipino",
90
+ ),
91
+ SEACrowdConfig(
92
+ name="lazada_review_filipino_seacrowd_text",
93
+ version=SEACROWD_VERSION,
94
+ description="lazada reviews in filipino SEACrowd schema",
95
+ schema="seacrowd_text",
96
+ subset_id="lazada_review_filipino",
97
+ ),
98
+ ]
99
+
100
+ DEFAULT_CONFIG_NAME = "lazada_review_filipino_source"
101
+
102
+ def _info(self) -> datasets.DatasetInfo:
103
+
104
+ if self.config.schema == "source":
105
+ features = datasets.Features({"index": datasets.Value("string"), "review": datasets.Value("string"),
106
+ "rating": datasets.Value("string")})
107
+
108
+ elif self.config.schema == "seacrowd_text":
109
+ features = schemas.text_features(label_names=["1", "2", "3", "4", "5"])
110
+
111
+ return datasets.DatasetInfo(
112
+ description=_DESCRIPTION,
113
+ features=features,
114
+ homepage=_HOMEPAGE,
115
+ license=_LICENSE,
116
+ citation=_CITATION,
117
+ )
118
+
119
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
120
+ """Returns SplitGenerators."""
121
+
122
+ urls = _URLS[_DATASETNAME]
123
+ data_dir = dl_manager.download_and_extract(urls)
124
+
125
+ return [
126
+ datasets.SplitGenerator(
127
+ name=datasets.Split.TRAIN,
128
+
129
+ gen_kwargs={
130
+ "filepath": data_dir,
131
+ "split": "train",
132
+ },
133
+ )
134
+ ]
135
+
136
+ def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
137
+ """Yields examples as (key, example) tuples."""
138
+ with open(filepath, 'r') as file:
139
+ data = json.load(file)
140
+
141
+ if self.config.schema == "source":
142
+ for i in range(len(data)):
143
+ yield i, {"index": str(i), "review": data[i]['review'], "rating": data[i]['rating']}
144
+
145
+ elif self.config.schema == "seacrowd_text":
146
+ for i in range(len(data)):
147
+ yield i, {"id": str(i), "text": data[i]['review'], "label": str(data[i]['rating'])}