|
from pathlib import Path |
|
from typing import List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.sea_datasets.lio_and_central_flores import processing |
|
from seacrowd.sea_datasets.lio_and_central_flores.path_url import _URLS_DICT |
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{alexthesis2018, |
|
author = {Alexander Elias}, |
|
title = {Lio and the Central Flores languages}, |
|
year = {2018}, |
|
month = {November}, |
|
address = {Rapenburg 70, 2311 EZ Leiden}, |
|
school = {Universiteit Leiden}, |
|
url = {https://studenttheses.universiteitleiden.nl/handle/1887/69452}, |
|
note = {Research Master's thesis}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "lio_and_central_flores" |
|
_DESCRIPTION = """This dataset is a collection of language resources of Li'o, Ende, Nage, and |
|
So'a which are collected in Ende, Flores, Eastern Nusa Tenggara. This dataset |
|
is the dataset from the research MA thesis by Alexander Elias. Title: Lio and the Central Flores languages |
|
""" |
|
_HOMEPAGE = "https://archive.mpi.nl/tla/islandora/search/alexander%20elias?type=dismax&islandora_solr_search_navigation=0&f%5B0%5D=cmd.Contributor%3A%22Alexander%5C%20Elias%22" |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_LANGUAGES = ["end", "ljl", "nxe", "eng"] |
|
LANGUAGES_TO_FILENAME_MAP = { |
|
"end": "ENDE", |
|
"nxe": "NAGE", |
|
"ljl": "LIO", |
|
} |
|
_LOCAL = False |
|
|
|
_URLS = _URLS_DICT |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class LioAndCentralFloresDataset(datasets.GeneratorBasedBuilder): |
|
"""This dataset is a collection of language resources of Li'o, Ende, Nage, and So'a""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "t2t" |
|
|
|
BUILDER_CONFIGS = [ |
|
|
|
|
|
SEACrowdConfig(name=f"{_DATASETNAME}_nxe_wordlist_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_nxe"), |
|
|
|
SEACrowdConfig(name=f"{_DATASETNAME}_eng_wordlist_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_eng"), |
|
] |
|
|
|
|
|
subset_names = sorted([f"{_DATASETNAME}_{lang}_eng" for lang in _LANGUAGES[:-2]]) + sorted([f"{_DATASETNAME}_eng_{lang}" for lang in _LANGUAGES[:-2]]) |
|
|
|
for name in subset_names: |
|
|
|
source_config = SEACrowdConfig(name=f"{name}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=name) |
|
BUILDER_CONFIGS.append(source_config) |
|
|
|
|
|
seacrowd_config = SEACrowdConfig(name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=name) |
|
BUILDER_CONFIGS.append(seacrowd_config) |
|
|
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
if "wordlist" in self.config.name: |
|
features = datasets.Features({"id": datasets.Value("string"), "word": datasets.Value("string")}) |
|
else: |
|
features = datasets.Features({"source_sentence": datasets.Value("string"), "target_sentence": datasets.Value("string"), "source_lang": datasets.Value("string"), "target_lang": datasets.Value("string")}) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
if "nxe" not in self.config.name: |
|
features = schemas.text2text_features |
|
else: |
|
raise ValueError("Invalid config schema") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
dset_lang = None |
|
for lang in _LANGUAGES[:-1]: |
|
if lang in self.config.name: |
|
dset_lang = lang |
|
break |
|
if dset_lang is None: |
|
raise ValueError("Invalid language name") |
|
|
|
filepath = {k: v["text_path"] for k, v in _URLS[LANGUAGES_TO_FILENAME_MAP[dset_lang]].items()} |
|
paths = dl_manager.download(filepath) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": paths, |
|
"lang_1": self.config.name.split("_")[4], |
|
"lang_2": self.config.name.split("_")[5]} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, lang_1: str, lang_2: str): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if "wordlist" in self.config.name: |
|
if "nxe" in self.config.name: |
|
_, words = self._get_word_(filepath) |
|
else: |
|
words, _ = self._get_word_(filepath) |
|
|
|
for item in words: |
|
for idx, word in enumerate(item): |
|
row = {"id": str(idx), "word": word} |
|
yield idx, row |
|
else: |
|
source_data, target_data = self._get_sentence_(filepath) |
|
for idx, (eng_text, other_text) in enumerate(zip(source_data, target_data)): |
|
if self.config.schema == "source": |
|
if lang_1 == "eng": |
|
example = { |
|
"source_sentence": eng_text, |
|
"target_sentence": other_text, |
|
"source_lang": lang_1, |
|
"target_lang": lang_2, |
|
} |
|
else: |
|
example = { |
|
"source_sentence": other_text, |
|
"target_sentence": eng_text, |
|
"source_lang": lang_1, |
|
"target_lang": lang_2, |
|
} |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
if lang_1 == "eng": |
|
example = { |
|
"id": str(idx), |
|
"text_1": eng_text, |
|
"text_2": other_text, |
|
"text_1_name": lang_1, |
|
"text_2_name": lang_2, |
|
} |
|
else: |
|
example = { |
|
"id": str(idx), |
|
"text_1": other_text, |
|
"text_2": eng_text, |
|
"text_1_name": lang_1, |
|
"text_2_name": lang_2, |
|
} |
|
yield idx, example |
|
|
|
def _get_sentence_(self, path_dict) -> Tuple[List, List]: |
|
source_data = [] |
|
target_data = [] |
|
for _, v in path_dict.items(): |
|
with open(v, "r", encoding="utf-8") as f: |
|
data = f.readlines() |
|
src, trg = processing.parse_text(data) |
|
source_data.extend(src) |
|
target_data.extend(trg) |
|
|
|
return source_data, target_data |
|
|
|
def _get_word_(self, path_dict) -> Tuple[List, List]: |
|
eng_data, ind_data, nage_data = [], [], [] |
|
for _, v in path_dict.items(): |
|
with open(v, "r", encoding="utf-8") as f: |
|
data = f.readlines() |
|
eng_word, ind_word, nage_word = processing.parse_wordlist(data) |
|
eng_data.append(eng_word) |
|
ind_data.append(ind_word) |
|
nage_data.append(nage_word) |
|
|
|
return eng_data, nage_data |
|
|