|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The Malaysia AI Hansard Scrape dataset contains 142,766 PDFs from the Malaysian Parliament website. |
|
""" |
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{malaysua_ai_hansard, |
|
author = {{Malaysia-AI}}, |
|
title = {Crawl Malaysian Hansard}, |
|
year = {2023}, % Change to the relevant year if known |
|
url = {https://huggingface.co/datasets/malaysia-ai/crawl-malaysian-hansard} |
|
|
|
} |
|
""" |
|
|
|
_DATASETNAME = "malaysia_ai_hansard" |
|
|
|
_DESCRIPTION = """\ |
|
The Malaysia AI Hansard Scrape dataset contains 142,766 PDFs from the Malaysian Parliament website. |
|
(https://www.parlimen.gov.my/hansard-dewan-rakyat.html?uweb=dr). |
|
It includes a JSON file for each document with the text labeled "original", page numbers "no_page" and "actual_no_page", the document's "date", and the "url" of the original PDF. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/malaysia-ai/crawl-malaysian-hansard" |
|
|
|
_LANGUAGES = ["zlm"] |
|
|
|
_LICENSE = Licenses.APACHE_2_0.value |
|
|
|
_LOCAL = False |
|
|
|
|
|
_URLS = { |
|
_DATASETNAME: "https://huggingface.co/datasets/malaysia-ai/crawl-malaysian-hansard", |
|
} |
|
|
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MalaysiaAIHansardDataset(datasets.GeneratorBasedBuilder): |
|
"""Malaysia AI Hansard Scrape dataset contains 142,766 PDFs from the Malaysian Parliament website.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="malaysia_ai_hansard_source", |
|
version=SOURCE_VERSION, |
|
description="malaysia_ai_hansard source schema", |
|
schema="source", |
|
subset_id="malaysia_ai_hansard", |
|
), |
|
SEACrowdConfig( |
|
name="malaysia_ai_hansard_seacrowd_ssp", |
|
version=SEACROWD_VERSION, |
|
description="malaysia_ai_hansard SEACrowd schema", |
|
schema="seacrowd_ssp", |
|
subset_id="malaysia_ai_hansard", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "malaysia_ai_hansard_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
|
|
|
|
|
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"original": datasets.Value("string"), |
|
"cleaned": datasets.Value("string"), |
|
"no_page": datasets.Value("string"), |
|
"actual_no_page": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_ssp": |
|
features = schemas.ssp_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
|
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": urls, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
data = datasets.load_dataset("/".join(filepath.split("/")[-2:]), split="train") |
|
|
|
for key, sample in enumerate(data): |
|
if self.config.schema == "source": |
|
yield key, { |
|
"original": sample["original"], |
|
"cleaned": sample["cleaned"], |
|
"no_page": sample["no_page"], |
|
"actual_no_page": sample["actual_no_page"], |
|
"date": sample["date"], |
|
"url": sample["url"], |
|
} |
|
|
|
elif self.config.schema == "seacrowd_ssp": |
|
yield key, { |
|
"id": key, |
|
"text": sample["cleaned"], |
|
} |
|
|