holylovenia
commited on
Commit
•
43f534b
1
Parent(s):
27b16ce
Upload minang_senti.py with huggingface_hub
Browse files- minang_senti.py +170 -0
minang_senti.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Dict, List, Tuple
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
from pandas import read_excel
|
21 |
+
|
22 |
+
from seacrowd.utils import schemas
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@inproceedings{koto-koto-2020-towards,
|
28 |
+
title = "Towards Computational Linguistics in {M}inangkabau Language:
|
29 |
+
Studies on Sentiment Analysis and Machine Translation",
|
30 |
+
author = "Koto, Fajri and
|
31 |
+
Koto, Ikhwan",
|
32 |
+
editor = "Nguyen, Minh Le and
|
33 |
+
Luong, Mai Chi and
|
34 |
+
Song, Sanghoun",
|
35 |
+
booktitle = "Proceedings of the 34th Pacific Asia Conference on Language,
|
36 |
+
Information and Computation",
|
37 |
+
month = oct,
|
38 |
+
year = "2020",
|
39 |
+
address = "Hanoi, Vietnam",
|
40 |
+
publisher = "Association for Computational Linguistics",
|
41 |
+
url = "https://aclanthology.org/2020.paclic-1.17",
|
42 |
+
pages = "138--148",
|
43 |
+
}
|
44 |
+
"""
|
45 |
+
|
46 |
+
_DATASETNAME = "minang_senti"
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
We release the Minangkabau corpus for sentiment analysis by manually translating
|
50 |
+
5,000 sentences of Indonesian sentiment analysis corpora. In this work, we
|
51 |
+
conduct a binary sentiment classification on positive and negative sentences by
|
52 |
+
first manually translating the Indonesian sentiment analysis corpus to the
|
53 |
+
Minangkabau language (Agam-Tanah Datar dialect)
|
54 |
+
"""
|
55 |
+
|
56 |
+
_HOMEPAGE = "https://github.com/fajri91/minangNLP"
|
57 |
+
|
58 |
+
_LANGUAGES = ["ind", "min"]
|
59 |
+
|
60 |
+
_LICENSE = Licenses.MIT.value
|
61 |
+
|
62 |
+
_LOCAL = False
|
63 |
+
|
64 |
+
_BASE_URL = "https://github.com/fajri91/minangNLP/raw/master/sentiment/data/folds/{split}{index}.xlsx"
|
65 |
+
|
66 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
67 |
+
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # text
|
68 |
+
|
69 |
+
_SOURCE_VERSION = "1.0.0"
|
70 |
+
|
71 |
+
_SEACROWD_VERSION = "2024.06.20"
|
72 |
+
|
73 |
+
|
74 |
+
class MinangSentiDataset(datasets.GeneratorBasedBuilder):
|
75 |
+
"""Binary sentiment classification on manually translated Minangkabau corpus."""
|
76 |
+
|
77 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
78 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
79 |
+
|
80 |
+
BUILDER_CONFIGS = []
|
81 |
+
for subset in _LANGUAGES:
|
82 |
+
BUILDER_CONFIGS += [
|
83 |
+
SEACrowdConfig(
|
84 |
+
name=f"{_DATASETNAME}_{subset}_source",
|
85 |
+
version=SOURCE_VERSION,
|
86 |
+
description=f"{_DATASETNAME} {subset} source schema",
|
87 |
+
schema="source",
|
88 |
+
subset_id=subset,
|
89 |
+
),
|
90 |
+
SEACrowdConfig(
|
91 |
+
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}",
|
92 |
+
version=SEACROWD_VERSION,
|
93 |
+
description=f"{_DATASETNAME} {subset} SEACrowd schema",
|
94 |
+
schema=_SEACROWD_SCHEMA,
|
95 |
+
subset_id=subset,
|
96 |
+
),
|
97 |
+
]
|
98 |
+
|
99 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source"
|
100 |
+
|
101 |
+
def _info(self) -> datasets.DatasetInfo:
|
102 |
+
if self.config.schema == "source":
|
103 |
+
features = datasets.Features(
|
104 |
+
{
|
105 |
+
"minang": datasets.Value("string"),
|
106 |
+
"indo": datasets.Value("string"),
|
107 |
+
"sentiment": datasets.ClassLabel(names=["positive", "negative"]),
|
108 |
+
}
|
109 |
+
)
|
110 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
111 |
+
features = schemas.text_features(label_names=["positive", "negative"])
|
112 |
+
|
113 |
+
return datasets.DatasetInfo(
|
114 |
+
description=_DESCRIPTION,
|
115 |
+
features=features,
|
116 |
+
homepage=_HOMEPAGE,
|
117 |
+
license=_LICENSE,
|
118 |
+
citation=_CITATION,
|
119 |
+
)
|
120 |
+
|
121 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
122 |
+
"""Returns SplitGenerators."""
|
123 |
+
train_urls = [_BASE_URL.format(split="train", index=i) for i in range(5)]
|
124 |
+
test_urls = [_BASE_URL.format(split="test", index=i) for i in range(5)]
|
125 |
+
dev_urls = [_BASE_URL.format(split="dev", index=i) for i in range(5)]
|
126 |
+
|
127 |
+
train_paths = [Path(dl_manager.download(url)) for url in train_urls]
|
128 |
+
test_paths = [Path(dl_manager.download(url)) for url in test_urls]
|
129 |
+
dev_paths = [Path(dl_manager.download(url)) for url in dev_urls]
|
130 |
+
|
131 |
+
return [
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TRAIN,
|
134 |
+
gen_kwargs={
|
135 |
+
"filepath": train_paths,
|
136 |
+
},
|
137 |
+
),
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=datasets.Split.TEST,
|
140 |
+
gen_kwargs={
|
141 |
+
"filepath": test_paths,
|
142 |
+
},
|
143 |
+
),
|
144 |
+
datasets.SplitGenerator(
|
145 |
+
name=datasets.Split.VALIDATION,
|
146 |
+
gen_kwargs={
|
147 |
+
"filepath": dev_paths,
|
148 |
+
},
|
149 |
+
),
|
150 |
+
]
|
151 |
+
|
152 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
153 |
+
"""Yields examples as (key, example) tuples."""
|
154 |
+
key = 0
|
155 |
+
for file in filepath:
|
156 |
+
data = read_excel(file)
|
157 |
+
for _, row in data.iterrows():
|
158 |
+
if self.config.schema == "source":
|
159 |
+
yield key, {
|
160 |
+
"minang": row["minang"],
|
161 |
+
"indo": row["indo"],
|
162 |
+
"sentiment": row["sentiment"],
|
163 |
+
}
|
164 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
165 |
+
yield key, {
|
166 |
+
"id": str(key),
|
167 |
+
"text": row["minang"] if self.config.subset_id == "min" else row["indo"],
|
168 |
+
"label": row["sentiment"],
|
169 |
+
}
|
170 |
+
key += 1
|