holylovenia commited on
Commit
43f534b
1 Parent(s): 27b16ce

Upload minang_senti.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. minang_senti.py +170 -0
minang_senti.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from pathlib import Path
17
+ from typing import Dict, List, Tuple
18
+
19
+ import datasets
20
+ from pandas import read_excel
21
+
22
+ from seacrowd.utils import schemas
23
+ from seacrowd.utils.configs import SEACrowdConfig
24
+ from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
25
+
26
+ _CITATION = """\
27
+ @inproceedings{koto-koto-2020-towards,
28
+ title = "Towards Computational Linguistics in {M}inangkabau Language:
29
+ Studies on Sentiment Analysis and Machine Translation",
30
+ author = "Koto, Fajri and
31
+ Koto, Ikhwan",
32
+ editor = "Nguyen, Minh Le and
33
+ Luong, Mai Chi and
34
+ Song, Sanghoun",
35
+ booktitle = "Proceedings of the 34th Pacific Asia Conference on Language,
36
+ Information and Computation",
37
+ month = oct,
38
+ year = "2020",
39
+ address = "Hanoi, Vietnam",
40
+ publisher = "Association for Computational Linguistics",
41
+ url = "https://aclanthology.org/2020.paclic-1.17",
42
+ pages = "138--148",
43
+ }
44
+ """
45
+
46
+ _DATASETNAME = "minang_senti"
47
+
48
+ _DESCRIPTION = """\
49
+ We release the Minangkabau corpus for sentiment analysis by manually translating
50
+ 5,000 sentences of Indonesian sentiment analysis corpora. In this work, we
51
+ conduct a binary sentiment classification on positive and negative sentences by
52
+ first manually translating the Indonesian sentiment analysis corpus to the
53
+ Minangkabau language (Agam-Tanah Datar dialect)
54
+ """
55
+
56
+ _HOMEPAGE = "https://github.com/fajri91/minangNLP"
57
+
58
+ _LANGUAGES = ["ind", "min"]
59
+
60
+ _LICENSE = Licenses.MIT.value
61
+
62
+ _LOCAL = False
63
+
64
+ _BASE_URL = "https://github.com/fajri91/minangNLP/raw/master/sentiment/data/folds/{split}{index}.xlsx"
65
+
66
+ _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
67
+ _SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # text
68
+
69
+ _SOURCE_VERSION = "1.0.0"
70
+
71
+ _SEACROWD_VERSION = "2024.06.20"
72
+
73
+
74
+ class MinangSentiDataset(datasets.GeneratorBasedBuilder):
75
+ """Binary sentiment classification on manually translated Minangkabau corpus."""
76
+
77
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
78
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
79
+
80
+ BUILDER_CONFIGS = []
81
+ for subset in _LANGUAGES:
82
+ BUILDER_CONFIGS += [
83
+ SEACrowdConfig(
84
+ name=f"{_DATASETNAME}_{subset}_source",
85
+ version=SOURCE_VERSION,
86
+ description=f"{_DATASETNAME} {subset} source schema",
87
+ schema="source",
88
+ subset_id=subset,
89
+ ),
90
+ SEACrowdConfig(
91
+ name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}",
92
+ version=SEACROWD_VERSION,
93
+ description=f"{_DATASETNAME} {subset} SEACrowd schema",
94
+ schema=_SEACROWD_SCHEMA,
95
+ subset_id=subset,
96
+ ),
97
+ ]
98
+
99
+ DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source"
100
+
101
+ def _info(self) -> datasets.DatasetInfo:
102
+ if self.config.schema == "source":
103
+ features = datasets.Features(
104
+ {
105
+ "minang": datasets.Value("string"),
106
+ "indo": datasets.Value("string"),
107
+ "sentiment": datasets.ClassLabel(names=["positive", "negative"]),
108
+ }
109
+ )
110
+ elif self.config.schema == _SEACROWD_SCHEMA:
111
+ features = schemas.text_features(label_names=["positive", "negative"])
112
+
113
+ return datasets.DatasetInfo(
114
+ description=_DESCRIPTION,
115
+ features=features,
116
+ homepage=_HOMEPAGE,
117
+ license=_LICENSE,
118
+ citation=_CITATION,
119
+ )
120
+
121
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
122
+ """Returns SplitGenerators."""
123
+ train_urls = [_BASE_URL.format(split="train", index=i) for i in range(5)]
124
+ test_urls = [_BASE_URL.format(split="test", index=i) for i in range(5)]
125
+ dev_urls = [_BASE_URL.format(split="dev", index=i) for i in range(5)]
126
+
127
+ train_paths = [Path(dl_manager.download(url)) for url in train_urls]
128
+ test_paths = [Path(dl_manager.download(url)) for url in test_urls]
129
+ dev_paths = [Path(dl_manager.download(url)) for url in dev_urls]
130
+
131
+ return [
132
+ datasets.SplitGenerator(
133
+ name=datasets.Split.TRAIN,
134
+ gen_kwargs={
135
+ "filepath": train_paths,
136
+ },
137
+ ),
138
+ datasets.SplitGenerator(
139
+ name=datasets.Split.TEST,
140
+ gen_kwargs={
141
+ "filepath": test_paths,
142
+ },
143
+ ),
144
+ datasets.SplitGenerator(
145
+ name=datasets.Split.VALIDATION,
146
+ gen_kwargs={
147
+ "filepath": dev_paths,
148
+ },
149
+ ),
150
+ ]
151
+
152
+ def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
153
+ """Yields examples as (key, example) tuples."""
154
+ key = 0
155
+ for file in filepath:
156
+ data = read_excel(file)
157
+ for _, row in data.iterrows():
158
+ if self.config.schema == "source":
159
+ yield key, {
160
+ "minang": row["minang"],
161
+ "indo": row["indo"],
162
+ "sentiment": row["sentiment"],
163
+ }
164
+ elif self.config.schema == _SEACROWD_SCHEMA:
165
+ yield key, {
166
+ "id": str(key),
167
+ "text": row["minang"] if self.config.subset_id == "min" else row["indo"],
168
+ "label": row["sentiment"],
169
+ }
170
+ key += 1