holylovenia
commited on
Commit
•
cac148f
1
Parent(s):
4cc27a8
Upload national_speech_corpus_sg_imda.py with huggingface_hub
Browse files
national_speech_corpus_sg_imda.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Dict, List, Tuple
|
5 |
+
|
6 |
+
try:
|
7 |
+
import audiosegment
|
8 |
+
except:
|
9 |
+
print("Please install audiosegment to use the `national_speech_corpus_sg_imda` dataloader.")
|
10 |
+
import datasets
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
try:
|
14 |
+
import textgrid
|
15 |
+
except:
|
16 |
+
print("Please install textgrid to use the `national_speech_corpus_sg_imda` dataloader.")
|
17 |
+
|
18 |
+
from seacrowd.utils import schemas
|
19 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
20 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@inproceedings{koh19_interspeech,
|
24 |
+
author={Jia Xin Koh and Aqilah Mislan and Kevin Khoo and Brian Ang and Wilson Ang and Charmaine Ng and Ying-Ying Tan},
|
25 |
+
title={{Building the Singapore English National Speech Corpus}},
|
26 |
+
year=2019,
|
27 |
+
booktitle={Proc. Interspeech 2019},
|
28 |
+
pages={321--325},
|
29 |
+
doi={10.21437/Interspeech.2019-1525},
|
30 |
+
issn={2308-457X}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DATASETNAME = "national_speech_corpus_sg_imda"
|
35 |
+
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
The National Speech Corpus (NSC) is the first large-scale Singapore English corpus spearheaded by the Info-communications and Media Development Authority (IMDA) of Singapore.
|
38 |
+
It aims to become an important source of open speech data for automatic speech recognition (ASR) research and speech-related applications.
|
39 |
+
The NSC improves speech engines’ accuracy of recognition and transcription for locally accented English.
|
40 |
+
The NSC is also able to contribute to speech synthesis technology where an AI voice can be produced that is more familiar to Singaporeans, with local terms pronounced more accurately.
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://www.imda.gov.sg/how-we-can-help/national-speech-corpus"
|
44 |
+
|
45 |
+
_LANGUAGES = ["eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
46 |
+
|
47 |
+
_LICENSE = f"{Licenses.OTHERS.value} | Singapore Open Data Licence V1.0"
|
48 |
+
|
49 |
+
_LOCAL = True
|
50 |
+
|
51 |
+
_URLS = {}
|
52 |
+
|
53 |
+
# paths of all file locations, presented in a list to support different operating systems
|
54 |
+
_PATHS = {
|
55 |
+
"read_balanced": {
|
56 |
+
"metadata": ["PART1", "DOC", "Speaker Information (Part 1).XLSX"],
|
57 |
+
"data": {
|
58 |
+
"standing_mic": {
|
59 |
+
"audio": ["PART1", "DATA", "CHANNEL0", "WAVE"],
|
60 |
+
"text": ["PART1", "DATA", "CHANNEL0", "SCRIPT"],
|
61 |
+
},
|
62 |
+
"boundary_mic": {
|
63 |
+
"audio": ["PART1", "DATA", "CHANNEL1", "WAVE"],
|
64 |
+
"text": ["PART1", "DATA", "CHANNEL1", "SCRIPT"],
|
65 |
+
},
|
66 |
+
"phone": {
|
67 |
+
"audio": ["PART1", "DATA", "CHANNEL2", "WAVE"],
|
68 |
+
"text": ["PART1", "DATA", "CHANNEL2", "SCRIPT"],
|
69 |
+
},
|
70 |
+
},
|
71 |
+
},
|
72 |
+
"read_pertinent": {
|
73 |
+
"metadata": ["PART2", "DOC", "Speaker Information (Part 2).XLSX"],
|
74 |
+
"data": {
|
75 |
+
"standing_mic": {
|
76 |
+
"audio": ["PART2", "DATA", "CHANNEL0", "WAVE"],
|
77 |
+
"text": ["PART2", "DATA", "CHANNEL0", "SCRIPT"],
|
78 |
+
},
|
79 |
+
"boundary_mic": {
|
80 |
+
"audio": ["PART2", "DATA", "CHANNEL1", "WAVE"],
|
81 |
+
"text": ["PART2", "DATA", "CHANNEL1", "SCRIPT"],
|
82 |
+
},
|
83 |
+
"phone": {
|
84 |
+
"audio": ["PART2", "DATA", "CHANNEL2", "WAVE"],
|
85 |
+
"text": ["PART2", "DATA", "CHANNEL2", "SCRIPT"],
|
86 |
+
},
|
87 |
+
},
|
88 |
+
},
|
89 |
+
"conversational_f2f": {
|
90 |
+
"metadata": ["PART3", "Documents", "Speakers (Part 3).XLSX"],
|
91 |
+
"data": {
|
92 |
+
"close_mic": {
|
93 |
+
"audio": ["PART3", "Audio Same CloseMic"],
|
94 |
+
"text": ["PART3", "Scripts Same"],
|
95 |
+
},
|
96 |
+
"boundary_mic": {
|
97 |
+
"audio": ["PART3", "Audio Same BoundaryMic"],
|
98 |
+
"text": ["PART3", "Scripts Same"],
|
99 |
+
},
|
100 |
+
},
|
101 |
+
},
|
102 |
+
"conversational_telephone": {
|
103 |
+
"metadata": ["PART3", "Documents", "Speakers (Part 3).XLSX"],
|
104 |
+
"data": {
|
105 |
+
"ivr": {
|
106 |
+
"audio": ["PART3", "Audio Separate IVR"],
|
107 |
+
"text": ["PART3", "Scripts Separate"],
|
108 |
+
},
|
109 |
+
"standing_mic": {
|
110 |
+
"audio": ["PART3", "Audio Separate StandingMic"],
|
111 |
+
"text": ["PART3", "Scripts Separate"],
|
112 |
+
},
|
113 |
+
},
|
114 |
+
},
|
115 |
+
}
|
116 |
+
|
117 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
|
118 |
+
|
119 |
+
_SOURCE_VERSION = "2.0.8" # should be 2.08 but HuggingFace does not allow
|
120 |
+
|
121 |
+
_SEACROWD_VERSION = "2024.06.20"
|
122 |
+
|
123 |
+
|
124 |
+
class NationalSpeechCorpusSgIMDADataset(datasets.GeneratorBasedBuilder):
|
125 |
+
"""The National Speech Corpus (NSC), the first large-scale Singapore English corpus spearheaded by the Info-communications and Media Development Authority (IMDA) of Singapore."""
|
126 |
+
|
127 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
128 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
129 |
+
|
130 |
+
BUILDER_CONFIGS = [
|
131 |
+
SEACrowdConfig(
|
132 |
+
name="national_speech_corpus_sg_imda_source",
|
133 |
+
version=SOURCE_VERSION,
|
134 |
+
description="national_speech_corpus_sg_imda source schema",
|
135 |
+
schema="source",
|
136 |
+
subset_id="national_speech_corpus_sg_imda",
|
137 |
+
),
|
138 |
+
SEACrowdConfig(
|
139 |
+
name="national_speech_corpus_sg_imda_seacrowd_sptext",
|
140 |
+
version=SEACROWD_VERSION,
|
141 |
+
description="national_speech_corpus_sg_imda SEACrowd schema",
|
142 |
+
schema="seacrowd_sptext",
|
143 |
+
subset_id="national_speech_corpus_sg_imda",
|
144 |
+
),
|
145 |
+
]
|
146 |
+
|
147 |
+
DEFAULT_CONFIG_NAME = "national_speech_corpus_sg_imda_source"
|
148 |
+
|
149 |
+
def _info(self) -> datasets.DatasetInfo:
|
150 |
+
if self.config.schema == "source":
|
151 |
+
features = datasets.Features(
|
152 |
+
{
|
153 |
+
"id": datasets.Value("string"),
|
154 |
+
"speaker_id": datasets.Value("string"),
|
155 |
+
"path": datasets.Value("string"),
|
156 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
157 |
+
"text": datasets.Value("string"),
|
158 |
+
}
|
159 |
+
)
|
160 |
+
elif self.config.schema == "seacrowd_sptext":
|
161 |
+
features = schemas.speech_text_features
|
162 |
+
|
163 |
+
return datasets.DatasetInfo(
|
164 |
+
description=_DESCRIPTION,
|
165 |
+
features=features,
|
166 |
+
homepage=_HOMEPAGE,
|
167 |
+
license=_LICENSE,
|
168 |
+
citation=_CITATION,
|
169 |
+
)
|
170 |
+
|
171 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
172 |
+
"""Returns SplitGenerators."""
|
173 |
+
if self.config.data_dir is None:
|
174 |
+
raise ValueError(f"This is a local dataset. Please download the data from {_HOMEPAGE} and pass the path as the data_dir kwarg to load_dataset.")
|
175 |
+
else:
|
176 |
+
data_dir = self.config.data_dir
|
177 |
+
|
178 |
+
splits = []
|
179 |
+
for split_name, data in _PATHS.items():
|
180 |
+
metadata_path = os.path.join(*data["metadata"])
|
181 |
+
for mic_type, data_path in data["data"].items():
|
182 |
+
splits.append(
|
183 |
+
datasets.SplitGenerator(
|
184 |
+
name=f"{split_name}_{mic_type}",
|
185 |
+
gen_kwargs={"filepath": data_dir, "audio_dir": os.path.join(*data_path["audio"]), "text_dir": os.path.join(*data_path["text"]), "split": split_name, "mic_type": mic_type, "metadata_path": metadata_path},
|
186 |
+
)
|
187 |
+
)
|
188 |
+
return splits
|
189 |
+
|
190 |
+
def _read_part1_part2_text(self, text_path):
|
191 |
+
text_data = {}
|
192 |
+
with open(text_path, encoding="utf-8-sig") as f:
|
193 |
+
for line in f:
|
194 |
+
comp = line.split("\t")
|
195 |
+
text_id = comp[0].strip()
|
196 |
+
if len(text_id) > 1:
|
197 |
+
text_data[text_id] = comp[1].strip()
|
198 |
+
return text_data
|
199 |
+
|
200 |
+
def _generate_examples(self, filepath: Path, audio_dir: Path, text_dir: Path, split: str, mic_type: str, metadata_path: str, tmp_cache="~/.cache/nsc") -> Tuple[int, Dict]:
|
201 |
+
"""Yields examples as (key, example) tuples."""
|
202 |
+
|
203 |
+
# get speaker info from Excel file
|
204 |
+
all_speaker_info = {}
|
205 |
+
if split.startswith("read"):
|
206 |
+
excel_file = pd.read_excel(open(os.path.join(filepath, metadata_path), "rb"), sheet_name="Speakers", dtype="object")
|
207 |
+
column_name = "SCD/PART" + "1" if split == "read_balanced" else 2
|
208 |
+
for idx, row in excel_file.iterrows():
|
209 |
+
all_speaker_info[str(row[column_name])] = {"gender": row["SEX"]}
|
210 |
+
elif split == "conversational_f2f":
|
211 |
+
excel_file = pd.read_excel(open(os.path.join(filepath, metadata_path), "rb"), sheet_name="Same Room", dtype="object")
|
212 |
+
for idx, row in excel_file.iterrows():
|
213 |
+
all_speaker_info[row["SCD"]] = {"age": row["AGE"], "gender": row["SEX"]}
|
214 |
+
elif split == "conversational_telephone":
|
215 |
+
excel_file = pd.read_excel(open(os.path.join(filepath, metadata_path), "rb"), sheet_name="Separate Room", dtype="object")
|
216 |
+
for idx, row in excel_file.iterrows():
|
217 |
+
all_speaker_info[f"{row['Conference ID']}_{row['Speaker ID']}"] = {"age": row["Age"], "gender": row["Gender"]}
|
218 |
+
|
219 |
+
for rel_text_path in os.listdir(os.path.join(filepath, text_dir)):
|
220 |
+
text_path = os.path.join(filepath, text_dir, rel_text_path)
|
221 |
+
text_name, _ext = os.path.splitext(rel_text_path)
|
222 |
+
if not os.path.isfile(text_path):
|
223 |
+
continue
|
224 |
+
if split.startswith("conversational"):
|
225 |
+
if split == "conversational_telephone":
|
226 |
+
# conf_{confid}_{confid}_{speaker_id} -> {confid}_{speaker_id}
|
227 |
+
speaker_id = text_name.split("_", 2)[-1]
|
228 |
+
pass
|
229 |
+
else:
|
230 |
+
speaker_id = text_name
|
231 |
+
speaker_info = all_speaker_info.get(speaker_id, {})
|
232 |
+
speaker_info["id"] = speaker_id
|
233 |
+
|
234 |
+
if mic_type in ["close_mic", "standing_mic"]:
|
235 |
+
audio_filename = text_name
|
236 |
+
audio_filepath = audio_filename + ".wav"
|
237 |
+
audio_path = os.path.join(audio_dir, audio_filepath)
|
238 |
+
elif mic_type == "boundary_mic":
|
239 |
+
audio_filename = text_name.split("-")[0]
|
240 |
+
audio_filepath = audio_filename + ".wav"
|
241 |
+
audio_path = os.path.join(audio_dir, audio_filepath)
|
242 |
+
elif mic_type == "ivr":
|
243 |
+
audio_subdir, audio_filename = text_name.rsplit("_", 1)
|
244 |
+
audio_filepath = audio_filename + ".wav"
|
245 |
+
audio_path = os.path.join(audio_dir, audio_subdir, audio_filepath)
|
246 |
+
|
247 |
+
audio_file = audiosegment.from_file(os.path.join(filepath, audio_path)).resample(sample_rate_Hz=16000)
|
248 |
+
text_spans = textgrid.TextGrid.fromFile(text_path)
|
249 |
+
audio_name, _ = os.path.splitext(os.path.basename(audio_dir))
|
250 |
+
for text_span in text_spans[0]:
|
251 |
+
start, end, text = text_span.minTime, text_span.maxTime, text_span.mark
|
252 |
+
key = f"{audio_name}_{start}_{end}"
|
253 |
+
|
254 |
+
start_sec, end_sec = int(start * 1000), int(end * 1000)
|
255 |
+
segment = audio_file[start_sec:end_sec]
|
256 |
+
export_dir = os.path.join(tmp_cache, "segmented", audio_name)
|
257 |
+
os.makedirs(export_dir, exist_ok=True)
|
258 |
+
segement_filename = os.path.join(export_dir, f"{audio_filename}-{round(start, 0)}-{round(end, 0)}.wav")
|
259 |
+
segment.export(segement_filename, format="wav")
|
260 |
+
|
261 |
+
example = {
|
262 |
+
"id": key,
|
263 |
+
"speaker_id": speaker_info["id"],
|
264 |
+
"path": segement_filename,
|
265 |
+
"audio": segement_filename,
|
266 |
+
"text": text,
|
267 |
+
}
|
268 |
+
if self.config.schema == "seacrowd_sptext":
|
269 |
+
example["metadata"] = {
|
270 |
+
"speaker_gender": speaker_info.get("gender", None), # not all speaker details are available
|
271 |
+
"speaker_age": None, # speaker age only available in age groups, but SEACrowd schema requires int64
|
272 |
+
}
|
273 |
+
yield key, example
|
274 |
+
|
275 |
+
else:
|
276 |
+
text_data = self._read_part1_part2_text(text_path)
|
277 |
+
audio_name, session = text_name[1:-1], text_name[-1]
|
278 |
+
speaker_id = audio_name
|
279 |
+
speaker_info = all_speaker_info.get(speaker_id, {})
|
280 |
+
speaker_info["id"] = speaker_id
|
281 |
+
for text_id, text in text_data.items():
|
282 |
+
with zipfile.ZipFile(os.path.join(filepath, audio_dir, f"SPEAKER{audio_name}.zip")) as zip_file:
|
283 |
+
zip_path = os.path.join(f"SPEAKER{audio_name}", f"SESSION{session}", f"{text_id}.WAV")
|
284 |
+
extract_path = os.path.join(tmp_cache, audio_dir)
|
285 |
+
os.makedirs(extract_path, exist_ok=True)
|
286 |
+
audio_path = zip_file.extract(zip_path, path=extract_path)
|
287 |
+
|
288 |
+
key = text_id
|
289 |
+
example = {
|
290 |
+
"id": key,
|
291 |
+
"speaker_id": speaker_info["id"],
|
292 |
+
"path": audio_path,
|
293 |
+
"audio": audio_path,
|
294 |
+
"text": text,
|
295 |
+
}
|
296 |
+
if self.config.schema == "seacrowd_sptext":
|
297 |
+
example["metadata"] = {
|
298 |
+
"speaker_gender": speaker_info.get("gender", None),
|
299 |
+
"speaker_age": None, # speaker age only available in age groups, but SEACrowd schema requires int64
|
300 |
+
}
|
301 |
+
yield key, example
|