File size: 6,334 Bytes
a54b736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" NERGrit Dataset """

from pathlib import Path
from typing import List

import datasets

from nusacrowd.utils import schemas
from nusacrowd.utils.common_parser import load_conll_data
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks

_CITATION = """\
@misc{Fahmi_NERGRIT_CORPUS_2019,
author = {Fahmi, Husni and Wibisono, Yudi and Kusumawati, Riyanti},
title = {{NERGRIT CORPUS}},
url = {https://github.com/grit-id/nergrit-corpus},
year = {2019}
}
"""

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "nergrit"
_DESCRIPTION = """\
Nergrit Corpus is a dataset collection of Indonesian Named Entity Recognition (NER), Statement Extraction,
and Sentiment Analysis developed by PT Gria Inovasi Teknologi (GRIT).
The Named Entity Recognition contains 18 entities as follow:
    'CRD': Cardinal
    'DAT': Date
    'EVT': Event
    'FAC': Facility
    'GPE': Geopolitical Entity
    'LAW': Law Entity (such as Undang-Undang)
    'LOC': Location
    'MON': Money
    'NOR': Political Organization
    'ORD': Ordinal
    'ORG': Organization
    'PER': Person
    'PRC': Percent
    'PRD': Product
    'QTY': Quantity
    'REG': Religion
    'TIM': Time
    'WOA': Work of Art
    'LAN': Language
"""

_HOMEPAGE = "https://github.com/grit-id/nergrit-corpus"
_LICENSE = "MIT"
_URL = "https://github.com/cahya-wirawan/indonesian-language-models/raw/master/data/nergrit-corpus_20190726_corrected.tgz"
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"


class NergritDataset(datasets.GeneratorBasedBuilder):
    """Indonesian Named Entity Recognition from https://github.com/grit-id/nergrit-corpus."""

    label_classes = {
        "ner": [
            "B-CRD",
            "B-DAT",
            "B-EVT",
            "B-FAC",
            "B-GPE",
            "B-LAN",
            "B-LAW",
            "B-LOC",
            "B-MON",
            "B-NOR",
            "B-ORD",
            "B-ORG",
            "B-PER",
            "B-PRC",
            "B-PRD",
            "B-QTY",
            "B-REG",
            "B-TIM",
            "B-WOA",
            "I-CRD",
            "I-DAT",
            "I-EVT",
            "I-FAC",
            "I-GPE",
            "I-LAN",
            "I-LAW",
            "I-LOC",
            "I-MON",
            "I-NOR",
            "I-ORD",
            "I-ORG",
            "I-PER",
            "I-PRC",
            "I-PRD",
            "I-QTY",
            "I-REG",
            "I-TIM",
            "I-WOA",
            "O",
        ],
        "sentiment": ["B-POS", "B-NEG", "B-NET", "I-POS", "I-NEG", "I-NET", "O"],
        "statement": ["B-BREL", "B-FREL", "B-STAT", "B-WHO", "I-BREL", "I-FREL", "I-STAT", "I-WHO", "O"],
    }
    BUILDER_CONFIGS = [
        NusantaraConfig(
            name=f"nergrit_{task}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="NERGrit source schema",
            schema="source",
            subset_id=f"nergrit_{task}",
        )
        for task in label_classes
    ]
    BUILDER_CONFIGS += [
        NusantaraConfig(
            name=f"nergrit_{task}_nusantara_seq_label",
            version=datasets.Version(_SOURCE_VERSION),
            description="NERGrit Nusantara schema",
            schema="nusantara_seq_label",
            subset_id=f"nergrit_{task}",
        )
        for task in label_classes
    ]

    DEFAULT_CONFIG_NAME = "nergrit_ner_source"

    def _info(self):
        features = None
        task = self.config.subset_id.split("_")[-1]
        if self.config.schema == "source":
            features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]})
        elif self.config.schema == "nusantara_seq_label":
            features = schemas.seq_label_features(self.label_classes[task])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        task = self.config.subset_id.split("_")[-1]
        archive = Path(dl_manager.download_and_extract(_URL))
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": archive / f"nergrit-corpus/{task}/data/train_corrected.txt"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": archive / f"nergrit-corpus/{task}/data/test_corrected.txt"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": archive / f"nergrit-corpus/{task}/data/valid_corrected.txt"},
            ),
        ]

    def _generate_examples(self, filepath: Path):
        conll_dataset = load_conll_data(filepath)

        if self.config.schema == "source":
            for index, row in enumerate(conll_dataset):
                ex = {"index": str(index), "tokens": row["sentence"], "ner_tag": row["label"]}
                yield index, ex
        elif self.config.schema == "nusantara_seq_label":
            for index, row in enumerate(conll_dataset):
                ex = {"id": str(index), "tokens": row["sentence"], "labels": row["label"]}
                yield index, ex
        else:
            raise ValueError(f"Invalid config: {self.config.name}")