|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" NERGrit Dataset """ |
|
|
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_conll_data |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@misc{Fahmi_NERGRIT_CORPUS_2019, |
|
author = {Fahmi, Husni and Wibisono, Yudi and Kusumawati, Riyanti}, |
|
title = {{NERGRIT CORPUS}}, |
|
url = {https://github.com/grit-id/nergrit-corpus}, |
|
year = {2019} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "nergrit" |
|
_DESCRIPTION = """\ |
|
Nergrit Corpus is a dataset collection of Indonesian Named Entity Recognition (NER), Statement Extraction, |
|
and Sentiment Analysis developed by PT Gria Inovasi Teknologi (GRIT). |
|
The Named Entity Recognition contains 18 entities as follow: |
|
'CRD': Cardinal |
|
'DAT': Date |
|
'EVT': Event |
|
'FAC': Facility |
|
'GPE': Geopolitical Entity |
|
'LAW': Law Entity (such as Undang-Undang) |
|
'LOC': Location |
|
'MON': Money |
|
'NOR': Political Organization |
|
'ORD': Ordinal |
|
'ORG': Organization |
|
'PER': Person |
|
'PRC': Percent |
|
'PRD': Product |
|
'QTY': Quantity |
|
'REG': Religion |
|
'TIM': Time |
|
'WOA': Work of Art |
|
'LAN': Language |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/grit-id/nergrit-corpus" |
|
_LICENSE = "MIT" |
|
_URL = "https://github.com/cahya-wirawan/indonesian-language-models/raw/master/data/nergrit-corpus_20190726_corrected.tgz" |
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class NergritDataset(datasets.GeneratorBasedBuilder): |
|
"""Indonesian Named Entity Recognition from https://github.com/grit-id/nergrit-corpus.""" |
|
|
|
label_classes = { |
|
"ner": [ |
|
"B-CRD", |
|
"B-DAT", |
|
"B-EVT", |
|
"B-FAC", |
|
"B-GPE", |
|
"B-LAN", |
|
"B-LAW", |
|
"B-LOC", |
|
"B-MON", |
|
"B-NOR", |
|
"B-ORD", |
|
"B-ORG", |
|
"B-PER", |
|
"B-PRC", |
|
"B-PRD", |
|
"B-QTY", |
|
"B-REG", |
|
"B-TIM", |
|
"B-WOA", |
|
"I-CRD", |
|
"I-DAT", |
|
"I-EVT", |
|
"I-FAC", |
|
"I-GPE", |
|
"I-LAN", |
|
"I-LAW", |
|
"I-LOC", |
|
"I-MON", |
|
"I-NOR", |
|
"I-ORD", |
|
"I-ORG", |
|
"I-PER", |
|
"I-PRC", |
|
"I-PRD", |
|
"I-QTY", |
|
"I-REG", |
|
"I-TIM", |
|
"I-WOA", |
|
"O", |
|
], |
|
"sentiment": ["B-POS", "B-NEG", "B-NET", "I-POS", "I-NEG", "I-NET", "O"], |
|
"statement": ["B-BREL", "B-FREL", "B-STAT", "B-WHO", "I-BREL", "I-FREL", "I-STAT", "I-WHO", "O"], |
|
} |
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"nergrit_{task}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="NERGrit source schema", |
|
schema="source", |
|
subset_id=f"nergrit_{task}", |
|
) |
|
for task in label_classes |
|
] |
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"nergrit_{task}_seacrowd_seq_label", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="NERGrit Nusantara schema", |
|
schema="seacrowd_seq_label", |
|
subset_id=f"nergrit_{task}", |
|
) |
|
for task in label_classes |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "nergrit_ner_source" |
|
|
|
def _info(self): |
|
features = None |
|
task = self.config.subset_id.split("_")[-1] |
|
if self.config.schema == "source": |
|
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tag": [datasets.Value("string")]}) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.label_classes[task]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
task = self.config.subset_id.split("_")[-1] |
|
archive = Path(dl_manager.download_and_extract(_URL)) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": archive / f"nergrit-corpus/{task}/data/train_corrected.txt"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": archive / f"nergrit-corpus/{task}/data/test_corrected.txt"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": archive / f"nergrit-corpus/{task}/data/valid_corrected.txt"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path): |
|
conll_dataset = load_conll_data(filepath) |
|
|
|
if self.config.schema == "source": |
|
for index, row in enumerate(conll_dataset): |
|
ex = {"index": str(index), "tokens": row["sentence"], "ner_tag": row["label"]} |
|
yield index, ex |
|
elif self.config.schema == "seacrowd_seq_label": |
|
for index, row in enumerate(conll_dataset): |
|
ex = {"id": str(index), "tokens": row["sentence"], "labels": row["label"]} |
|
yield index, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|