from pathlib import Path from typing import List import datasets import json from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME _DATASETNAME = "news_en_id" _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME _LANGUAGES = ["ind", "eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _CITATION = """\ @inproceedings{guntara-etal-2020-benchmarking, title = "Benchmarking Multidomain {E}nglish-{I}ndonesian Machine Translation", author = "Guntara, Tri Wahyu and Aji, Alham Fikri and Prasojo, Radityo Eko", booktitle = "Proceedings of the 13th Workshop on Building and Using Comparable Corpora", month = may, year = "2020", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2020.bucc-1.6", pages = "35--43", language = "English", ISBN = "979-10-95546-42-9", } """ _DESCRIPTION = """\ News En-Id is a machine translation dataset containing Indonesian-English parallel sentences collected from the news. The news dataset is collected from multiple sources: Pan Asia Networking Localization (PANL), Bilingual BBC news articles, Berita Jakarta, and GlobalVoices. We split the dataset and use 75% as the training set, 10% as the validation set, and 15% as the test set. Each of the datasets is evaluated in both directions, i.e., English to Indonesian (En → Id) and Indonesian to English (Id → En) translations. """ _HOMEPAGE = "https://github.com/gunnxx/indonesian-mt-data" _LICENSE = "Creative Commons Attribution Share-Alike 4.0 International" _URLs = {"indonlg": "https://storage.googleapis.com/babert-pretraining/IndoNLG_finals/downstream_task/downstream_task_datasets.zip"} _SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class NewsEnId(datasets.GeneratorBasedBuilder): """Bible Su-Id is a machine translation dataset containing Indonesian-Sundanese parallel sentences collected from the bible..""" BUILDER_CONFIGS = [ SEACrowdConfig( name="news_en_id_source", version=datasets.Version(_SOURCE_VERSION), description="News En-Id source schema", schema="source", subset_id="news_en_id", ), SEACrowdConfig( name="news_en_id_seacrowd_t2t", version=datasets.Version(_SEACROWD_VERSION), description="News En-Id Nusantara schema", schema="seacrowd_t2t", subset_id="news_en_id", ), ] DEFAULT_CONFIG_NAME = "news_en_id_source" def _info(self): if self.config.schema == "source": features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string")}) elif self.config.schema == "seacrowd_t2t": features = schemas.text2text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: base_path = Path(dl_manager.download_and_extract(_URLs["indonlg"])) / "IndoNLG_downstream_tasks" / "MT_IMD_NEWS" data_files = { "train": base_path / "train_preprocess.json", "validation": base_path / "valid_preprocess.json", "test": base_path / "test_preprocess.json", } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["validation"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}, ), ] def _generate_examples(self, filepath: Path): data = json.load(open(filepath, "r")) if self.config.schema == "source": for row in data: ex = {"id": row["id"], "text": row["text"], "label": row["label"]} yield row["id"], ex elif self.config.schema == "seacrowd_t2t": for row in data: ex = { "id": row["id"], "text_1": row["text"], "text_2": row["label"], "text_1_name": "eng", "text_2_name": "ind", } yield row["id"], ex else: raise ValueError(f"Invalid config: {self.config.name}")