Datasets:

ArXiv:
License:
holylovenia commited on
Commit
999d809
1 Parent(s): 2c2c08f

Upload oil.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. oil.py +149 -0
oil.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from pathlib import Path
17
+ from typing import Dict, List, Tuple
18
+
19
+ import datasets
20
+ import pandas as pd
21
+
22
+ from seacrowd.utils.configs import SEACrowdConfig
23
+ from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses
24
+
25
+ _CITATION = """\
26
+ @inproceedings{maxwelll-smith-foley-2023-automated,
27
+ title = "Automated speech recognition of {I}ndonesian-{E}nglish language lessons on {Y}ou{T}ube using transfer learning",
28
+ author = "Maxwell-Smith, Zara and Foley, Ben",
29
+ editor = "Serikov, Oleg
30
+ and Voloshina, Ekaterina
31
+ and Postnikova, Anna
32
+ and Klyachko, Elena
33
+ and Vylomova, Ekaterina
34
+ and Shavrina, Tatiana
35
+ and Le Ferrand, Eric
36
+ and Malykh, Valentin
37
+ and Tyers, Francis
38
+ and Arkhangelskiy, Timofey
39
+ and Mikhailov, Vladislav",
40
+ booktitle = "Proceedings of the Second Workshop on NLP Applications to Field Linguistics",
41
+ month = may,
42
+ year = "2023",
43
+ address = "Dubrovnik, Croatia",
44
+ publisher = "Association for Computational Linguistics",
45
+ url = "https://aclanthology.org/2023.fieldmatters-1.1",
46
+ doi = "10.18653/v1/2023.fieldmatters-1.1",
47
+ pages = "1--16",
48
+ abstract = "Experiments to fine-tune large multilingual models with limited data from a specific domain or setting has potential
49
+ to improve automatic speech recognition (ASR) outcomes. This paper reports on the use of the Elpis ASR pipeline to fine-tune two
50
+ pre-trained base models, Wav2Vec2-XLSR-53 and Wav2Vec2-Large-XLSR-Indonesian, with various mixes of data from 3 YouTube channels
51
+ teaching Indonesian with English as the language of instruction. We discuss our results inferring new lesson audio (22-46%
52
+ word error rate) in the context of speeding data collection in diverse and specialised settings. This study is an example of how
53
+ ASR can be used to accelerate natural language research, expanding ethically sourced data in low-resource settings.",
54
+ }
55
+ """
56
+
57
+ _DATASETNAME = "oil"
58
+
59
+ _DESCRIPTION = """\
60
+ The Online Indonesian Learning (OIL) dataset or corpus currently contains lessons from three Indonesian teachers who have posted content on YouTube.
61
+ """
62
+
63
+ _HOMEPAGE = "https://huggingface.co/datasets/ZMaxwell-Smith/OIL"
64
+
65
+ _LANGUAGES = ["eng", "ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
66
+
67
+ _LICENSE = Licenses.CC_BY_NC_ND_4_0.value
68
+
69
+ _LOCAL = False
70
+
71
+ _URLS = {
72
+ _DATASETNAME: {"train": "https://huggingface.co/api/datasets/ZMaxwell-Smith/OIL/parquet/default/train/0.parquet"},
73
+ }
74
+
75
+ _SUPPORTED_TASKS = []
76
+ _SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS]
77
+
78
+ _SOURCE_VERSION = "1.0.0"
79
+
80
+ _SEACROWD_VERSION = "2024.06.20"
81
+
82
+
83
+ class OIL(datasets.GeneratorBasedBuilder):
84
+ """The Online Indonesian Learning (OIL) dataset or corpus currently contains lessons from three Indonesian teachers who have posted content on YouTube."""
85
+
86
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
87
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
88
+
89
+ BUILDER_CONFIGS = [
90
+ SEACrowdConfig(
91
+ name=f"{_DATASETNAME}_source",
92
+ version=SOURCE_VERSION,
93
+ description=f"{_DATASETNAME} source schema",
94
+ schema="source",
95
+ subset_id=f"{_DATASETNAME}",
96
+ ),
97
+ ]
98
+
99
+ DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
100
+
101
+ def _info(self) -> datasets.DatasetInfo:
102
+
103
+ if self.config.schema == "source":
104
+ features = datasets.Features(
105
+ {
106
+ "audio": datasets.Audio(decode=False),
107
+ "label": datasets.ClassLabel(num_classes=98),
108
+ }
109
+ )
110
+
111
+ else:
112
+ raise ValueError(f"Invalid config: {self.config.name}")
113
+
114
+ return datasets.DatasetInfo(
115
+ description=_DESCRIPTION,
116
+ features=features,
117
+ homepage=_HOMEPAGE,
118
+ license=_LICENSE,
119
+ citation=_CITATION,
120
+ )
121
+
122
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
123
+ """Returns SplitGenerators."""
124
+
125
+ urls = _URLS[_DATASETNAME]
126
+ train_path = dl_manager.download_and_extract(urls["train"])
127
+
128
+ return [
129
+ datasets.SplitGenerator(
130
+ name=datasets.Split.TRAIN,
131
+ gen_kwargs={
132
+ "filepath": train_path,
133
+ "split": "train",
134
+ },
135
+ ),
136
+ ]
137
+
138
+ def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
139
+ """Yields examples as (key, example) tuples."""
140
+
141
+ if self.config.schema == "source":
142
+
143
+ df = pd.read_parquet(filepath)
144
+
145
+ for index, row in df.iterrows():
146
+ yield index, row.to_dict()
147
+
148
+ else:
149
+ raise ValueError(f"Invalid config: {self.config.name}")