|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, Licenses, |
|
Tasks) |
|
|
|
_DATASETNAME = "palito" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_CITATION = """ |
|
@inproceedings{dita-etal-2009-building, |
|
title = "Building Online Corpora of {P}hilippine Languages", |
|
author = "Dita, Shirley N. and |
|
Roxas, Rachel Edita O. and |
|
Inventado, Paul", |
|
editor = "Kwong, Olivia", |
|
booktitle = "Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 2", |
|
month = dec, |
|
year = "2009", |
|
address = "Hong Kong", |
|
publisher = "City University of Hong Kong", |
|
url = "https://aclanthology.org/Y09-2024", |
|
pages = "646--653", |
|
} |
|
""" |
|
|
|
|
|
_LANGUAGES = ["bik", "ceb", "hil", "ilo", "tgl", "pam", "pag", "war"] |
|
_LANG_CONFIG = { |
|
"bik": "Bikol", |
|
"ceb": "Cebuano", |
|
"hil": "Hiligaynon", |
|
"ilo": "Ilocano", |
|
"tgl": "Tagalog", |
|
"pam": "Kapampangan", |
|
"pag": "Pangasinense", |
|
"war": "Waray", |
|
} |
|
|
|
_LOCAL = False |
|
|
|
_DESCRIPTION = """\ |
|
This paper aims at describing the building of the online corpora on Philippine |
|
languages as part of the online repository system called Palito. There are five components |
|
of the corpora: the top four major Philippine languages which are Tagalog, Cebuano, |
|
Ilocano and Hiligaynon and the Filipino Sign Language (FSL). The four languages are |
|
composed of 250,000-word written texts each, whereas the FSL is composed of seven |
|
thousand signs in video format. Categories of the written texts include creative writing (such |
|
as novels and stories) and religious texts (such as the Bible). Automated tools are provided |
|
for language analysis such as word count, collocates, and others. This is part of a bigger |
|
corpora building project for Philippine languages that would consider text, speech and |
|
video forms, and the corresponding development of automated tools for language analysis |
|
of these various forms. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/imperialite/Philippine-Languages-Online-Corpora/tree/master/PALITO%20Corpus" |
|
|
|
_LICENSE = Licenses.LGPL.value |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_URLS = { |
|
"literary": "https://raw.githubusercontent.com/imperialite/Philippine-Languages-Online-Corpora/master/PALITO%20Corpus/Data/{lang}_Literary_Text.txt", |
|
"religious": "https://raw.githubusercontent.com/imperialite/Philippine-Languages-Online-Corpora/master/PALITO%20Corpus/Data/{lang}_Religious_Text.txt", |
|
} |
|
|
|
|
|
class PalitoDataset(datasets.GeneratorBasedBuilder): |
|
"""Palito corpus""" |
|
|
|
subsets = [f"{_DATASETNAME}_{lang}" for lang in _LANGUAGES] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="{sub}_source".format(sub=subset), |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="Palito {sub} source schema".format(sub=subset), |
|
schema="source", |
|
subset_id="{sub}".format(sub=subset), |
|
) |
|
for subset in subsets |
|
] + [ |
|
SEACrowdConfig( |
|
name="{sub}_seacrowd_ssp".format(sub=subset), |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="Palito {sub} SEACrowd schema".format(sub=subset), |
|
schema="seacrowd_ssp", |
|
subset_id="{sub}".format(sub=subset), |
|
) |
|
for subset in subsets |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_ssp": |
|
features = schemas.self_supervised_pretraining.features |
|
else: |
|
raise ValueError(f"Invalid config schema: {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
lang = self.config.name.split("_")[1] |
|
filepaths = [Path(dl_manager.download(_URLS["literary"].format(lang=_LANG_CONFIG[lang]))), Path(dl_manager.download(_URLS["religious"].format(lang=_LANG_CONFIG[lang])))] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepaths": filepaths}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths: list[Path]) -> Tuple[int, Dict]: |
|
counter = 0 |
|
for path in filepaths: |
|
with open(path, encoding="utf-8") as f: |
|
for line in f.readlines(): |
|
if line.strip() == "": |
|
continue |
|
|
|
if self.config.schema == "source": |
|
yield ( |
|
counter, |
|
{ |
|
"id": str(counter), |
|
"text": line.strip(), |
|
}, |
|
) |
|
elif self.config.schema == "seacrowd_ssp": |
|
yield ( |
|
counter, |
|
{ |
|
"id": str(counter), |
|
"text": line.strip(), |
|
}, |
|
) |
|
|
|
counter += 1 |
|
|