|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, Licenses |
|
|
|
_CITATION = """\ |
|
@article{dao2021intent, |
|
title={Intent Detection and Slot Filling for Vietnamese}, |
|
author={Mai Hoang Dao and Thinh Hung Truong and Dat Quoc Nguyen}, |
|
year={2021}, |
|
eprint={2104.02021}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "phoatis" |
|
|
|
_DESCRIPTION = """\ |
|
This is first public intent detection and slot filling dataset for Vietnamese. The data contains 5871 English utterances from ATIS that are manually translated by professional translators into Vietnamese. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/VinAIResearch/JointIDSF/" |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"syllable": { |
|
"syllable_train": [ |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/train/seq.in", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/train/seq.out", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/train/label", |
|
], |
|
"syllable_dev": [ |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/dev/seq.in", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/dev/seq.out", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/dev/label", |
|
], |
|
"syllable_test": [ |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/test/seq.in", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/test/seq.out", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/test/label", |
|
], |
|
}, |
|
"word": { |
|
"word_train": [ |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/train/seq.in", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/train/seq.out", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/train/label", |
|
], |
|
"word_dev": [ |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/dev/seq.in", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/dev/seq.out", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/dev/label", |
|
], |
|
"word_test": [ |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/test/seq.in", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/test/seq.out", |
|
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/test/label", |
|
], |
|
}, |
|
} |
|
} |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["vie"] |
|
|
|
_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION, Tasks.SLOT_FILLING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def config_constructor_intent_cls(schema: str, version: str, phoatis_subset: str = "syllable") -> SEACrowdConfig: |
|
assert phoatis_subset == "syllable" or phoatis_subset == "word" |
|
|
|
return SEACrowdConfig( |
|
name="phoatis_intent_cls_{phoatis_subset}_{schema}".format(phoatis_subset=phoatis_subset.lower(), schema=schema), |
|
version=version, |
|
description="PhoATIS Intent Classification: {subset} {schema} schema".format(subset=phoatis_subset, schema=schema), |
|
schema=schema, |
|
subset_id=phoatis_subset, |
|
) |
|
|
|
|
|
def config_constructor_slot_filling(schema: str, version: str, phoatis_subset: str = "syllable") -> SEACrowdConfig: |
|
assert phoatis_subset == "syllable" or phoatis_subset == "word" |
|
|
|
return SEACrowdConfig( |
|
name="phoatis_slot_filling_{phoatis_subset}_{schema}".format(phoatis_subset=phoatis_subset.lower(), schema=schema), |
|
version=version, |
|
description="PhoATIS Slot Filling: {subset} {schema} schema".format(subset=phoatis_subset, schema=schema), |
|
schema=schema, |
|
subset_id=phoatis_subset, |
|
) |
|
|
|
|
|
class PhoATIS(datasets.GeneratorBasedBuilder): |
|
"""This is first public intent detection and slot filling dataset for Vietnamese. The data contains 5871 English utterances from ATIS that are manually translated by professional translators into Vietnamese.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
|
|
BUILDER_CONFIGS = [] |
|
BUILDER_CONFIGS.extend([config_constructor_intent_cls("seacrowd_text", _SEACROWD_VERSION, subset) for subset in ["syllable", "word"]]) |
|
|
|
BUILDER_CONFIGS.extend([config_constructor_slot_filling("seacrowd_seq_label", _SEACROWD_VERSION, subset) for subset in ["syllable", "word"]]) |
|
|
|
BUILDER_CONFIGS.extend( |
|
[ |
|
SEACrowdConfig( |
|
name="phoatis_source", |
|
version=SOURCE_VERSION, |
|
description="PhoATIS source schema (Syllable version)", |
|
schema="source", |
|
subset_id="syllable", |
|
), |
|
SEACrowdConfig( |
|
name="phoatis_intent_cls_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="PhoATIS Intent Classification SEACrowd schema (Syllable version)", |
|
schema="seacrowd_text", |
|
subset_id="syllable", |
|
), |
|
SEACrowdConfig( |
|
name="phoatis_slot_filling_seacrowd_seq_label", |
|
version=SEACROWD_VERSION, |
|
description="PhoATIS Slot Filling SEACrowd schema (Syllable version)", |
|
schema="seacrowd_seq_label", |
|
subset_id="syllable", |
|
), |
|
] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "phoatis_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"intent_label": datasets.Value("string"), |
|
"slot_label": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
with open("./seacrowd/sea_datasets/phoatis/intent_label.txt", "r+", encoding="utf8") as fw: |
|
intent_label = fw.read() |
|
intent_label = intent_label.split("\n") |
|
features = schemas.text_features(intent_label) |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
with open("./seacrowd/sea_datasets/phoatis/slot_label.txt", "r+", encoding="utf8") as fw: |
|
slot_label = fw.read() |
|
slot_label = slot_label.split("\n") |
|
features = schemas.seq_label_features(slot_label) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
schema = self.config.subset_id |
|
urls = _URLS[_DATASETNAME][schema] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir[f"{schema}_train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir[f"{schema}_test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir[f"{schema}_dev"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
with open(filepath[0], "r+", encoding="utf8") as fw: |
|
data_input = fw.read() |
|
data_input = data_input.split("\n") |
|
with open(filepath[1], "r+", encoding="utf8") as fw: |
|
data_slot = fw.read() |
|
data_slot = data_slot.split("\n") |
|
with open(filepath[2], "r+", encoding="utf8") as fw: |
|
data_intent = fw.read() |
|
data_intent = data_intent.split("\n") |
|
|
|
if self.config.schema == "source": |
|
for idx, text in enumerate(data_input): |
|
example = {} |
|
example["id"] = str(idx) |
|
example["text"] = text |
|
example["intent_label"] = data_intent[idx] |
|
example["slot_label"] = data_slot[idx].split() |
|
yield example["id"], example |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
for idx, text in enumerate(data_input): |
|
example = {} |
|
example["id"] = str(idx) |
|
example["text"] = text |
|
example["label"] = data_intent[idx] |
|
yield example["id"], example |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
for idx, text in enumerate(data_input): |
|
example = {} |
|
example["id"] = str(idx) |
|
example["tokens"] = text.split() |
|
example["labels"] = data_slot[idx].split() |
|
yield example["id"], example |
|
|