File size: 7,973 Bytes
92a71cc 832fdcc 92a71cc 832fdcc 92a71cc 832fdcc 92a71cc 832fdcc 92a71cc 832fdcc 92a71cc 832fdcc 92a71cc 832fdcc 92a71cc 832fdcc 92a71cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@data{FK2/VTAHRH_2022,
author = {ARDIYANTI SURYANI, ARIE and Widyantoro, Dwi Hendratmo and Purwarianti, Ayu and Sudaryat, Yayat},
publisher = {Telkom University Dataverse},
title = {{PoSTagged Sundanese Monolingual Corpus}},
year = {2022},
version = {DRAFT VERSION},
doi = {10.34820/FK2/VTAHRH},
url = {https://doi.org/10.34820/FK2/VTAHRH}
}
@INPROCEEDINGS{7437678,
author={Suryani, Arie Ardiyanti and Widyantoro, Dwi Hendratmo and Purwarianti, Ayu and Sudaryat, Yayat},
booktitle={2015 International Conference on Information Technology Systems and Innovation (ICITSI)},
title={Experiment on a phrase-based statistical machine translation using PoS Tag information for Sundanese into Indonesian},
year={2015},
volume={},
number={},
pages={1-6},
doi={10.1109/ICITSI.2015.7437678}
}
"""
_LANGUAGES = ["sun"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "postag_su"
_DESCRIPTION = """\
This dataset contains 3616 lines of Sundanese sentences taken from several online magazines (Mangle, Dewan Dakwah Jabar, and Balebat). \
Annotated with PoS Labels by several undergraduates of the Sundanese Language Education Study Program (PPBS), UPI Bandung.
"""
_HOMEPAGE = "https://dataverse.telkomuniversity.ac.id/dataset.xhtml?persistentId=doi:10.34820/FK2/VTAHRH"
_LICENSE = 'CC0 - "Public Domain Dedication"'
_URLS = {
_DATASETNAME: "https://dataverse.telkomuniversity.ac.id/api/access/datafile/:persistentId?persistentId=doi:10.34820/FK2/VTAHRH/WQIFK8",
}
_SUPPORTED_TASKS = [Tasks.POS_TAGGING]
_SOURCE_VERSION = "1.1.0"
_SEACROWD_VERSION = "2024.06.20"
class PosSunMonoDataset(datasets.GeneratorBasedBuilder):
"""PoSTagged Sundanese Monolingual Corpus"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
# Based on Wicaksono, A. F., & Purwarianti, A. (2010). HMM Based Part-of-Speech Tagger for Bahasa Indonesia. On Proceedings of 4th International MALINDO (Malay and Indonesian Language) Workshop.
POS_TAGS = [
"",
"!",
'"',
"'",
")",
",",
"-",
".",
"...",
"....",
"/",
":",
";",
"?",
"C",
"CBI",
"CC",
"CDC",
"CDI",
"CDO",
"CDP",
"CDT",
"CP",
"CRB",
"CS",
"DC",
"DT",
"FE",
"FW",
"GM",
"IN",
"J",
"JJ",
"KA",
"KK",
"MD",
"MG",
"MN",
"N",
"NEG",
"NN",
"NNA",
"NNG",
"NNN",
"NNO",
"NNP",
"NNPP",
"NP",
"NPP",
"OP",
"PB",
"PCDP",
"PR",
"PRL",
"PRL|IN",
"PRN",
"PRP",
"RB",
"RBT",
"RB|RP",
"RN",
"RP",
"SC",
"SCC",
"SC|IN",
"SYM",
"UH",
"VB",
"VBI",
"VBT",
"VRB",
"W",
"WH",
"WHP",
"WRP",
"`",
"–",
"—",
"‘",
"’",
"“",
"”",
]
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_seq_label",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} Nusantara Seq Label schema",
schema="seacrowd_seq_label",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features({"labeled_sentence": datasets.Value("string")})
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(self.POS_TAGS)
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_path = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_path,
},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
def __hotfix(line):
if line.endswith(" taun|NN 1953.|."):
return line.replace(" taun|NN 1953.|.", " taun|NN 1953|CDP .|.")
elif line.endswith(" jeung|CC|CC sasab|RB .|."):
return line.replace(" jeung|CC|CC sasab|RB .|.", " jeung|CC sasab|RB .|.")
elif line.startswith("Kagiatan|NN éta|DT dihadiran|VBT kira|-kira "):
return line.replace("Kagiatan|NN éta|DT dihadiran|VBT kira|-kira ", "Kagiatan|NN éta|DT dihadiran|VBT kira-kira|DT ")
return line
with open(filepath, "r", encoding="utf8") as ipt:
raw = list(map(lambda l: __hotfix(l.rstrip("\n ")), ipt))
pat_0 = r"(,\|,|\?\|\?|-\|-|!\|!)"
repl_spc = r" \1 "
pat_1 = r"([A-Z”])(\.\|\.)"
pat_2 = r"(\.\|\.)([^. ])"
repl_spl = r"\1 \2"
pat_3 = r"([^ ]+\|[^ ]+)\| "
repl_del = r"\1 "
pat_4 = r"\|\|"
repl_dup = r"|"
def __apply_regex(txt):
for pat, repl in [(pat_0, repl_spc), (pat_1, repl_spl), (pat_2, repl_spl), (pat_3, repl_del), (pat_4, repl_dup)]:
txt = re.sub(pat, repl, txt)
return txt
def __cleanse_label(token):
text, label = token
return text, re.sub(r"([A-Z]+)[.,)]", r"\1", label.upper())
if self.config.schema == "source":
for key, example in enumerate(raw):
yield key, {"labeled_sentence": example}
elif self.config.schema == "seacrowd_seq_label":
spaced = list(map(__apply_regex, raw))
data = list(map(lambda l: [__cleanse_label(tok.split("|", 1)) for tok in filter(None, l.split(" "))], spaced))
for key, example in enumerate(data):
tokens, labels = zip(*example)
yield key, {"id": str(key), "tokens": tokens, "labels": labels}
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
|