Datasets:
holylovenia
commited on
Commit
•
6b5c5a0
1
Parent(s):
7587a27
Upload senti_bahasa_rojak.py with huggingface_hub
Browse files- senti_bahasa_rojak.py +168 -0
senti_bahasa_rojak.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Dict, List, Tuple
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
10 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
11 |
+
|
12 |
+
_CITATION = """\
|
13 |
+
@inproceedings{romadhona2022brcc,
|
14 |
+
title={BRCC and SentiBahasaRojak: The First Bahasa Rojak Corpus for Pretraining and Sentiment Analysis Dataset},
|
15 |
+
author={Romadhona, Nanda Putri and Lu, Sin-En and Lu, Bo-Han and Tsai, Richard Tzong-Han},
|
16 |
+
booktitle={Proceedings of the 29th International Conference on Computational Linguistics},
|
17 |
+
pages={4418--4428},
|
18 |
+
year={2022},
|
19 |
+
organization={International Committee on Computational Linguistics},
|
20 |
+
address={Taiwan},
|
21 |
+
email={[email protected], {alznn, lu110522028, thtsai}@g.ncu.edu.tw}
|
22 |
+
}
|
23 |
+
"""
|
24 |
+
|
25 |
+
_DATASETNAME = "senti_bahasa_rojak"
|
26 |
+
|
27 |
+
_DESCRIPTION = """\
|
28 |
+
This dataset contains reviews for products, movies, and stocks in the Bahasa Rojak dialect,
|
29 |
+
a popular dialect in Malaysia that consists of English, Malay, and Chinese.
|
30 |
+
Each review is manually annotated as positive (bullish for stocks) or negative (bearish for stocks).
|
31 |
+
Reviews are generated through data augmentation using English and Malay sentiment analysis datasets.
|
32 |
+
"""
|
33 |
+
|
34 |
+
_HOMEPAGE = "https://data.depositar.io/dataset/brcc_and_sentibahasarojak/resource/8a558f64-98ff-4922-a751-0ce2ce8447bd"
|
35 |
+
|
36 |
+
_LANGUAGES = ["zlm", "eng", "cmn"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
37 |
+
|
38 |
+
_LICENSE = Licenses.UNKNOWN.value
|
39 |
+
|
40 |
+
_LOCAL = False
|
41 |
+
|
42 |
+
_URLS = {
|
43 |
+
_DATASETNAME: "https://data.depositar.io/dataset/304d1572-27d6-4549-8292-b1c8f5e9c086/resource/8a558f64-98ff-4922-a751-0ce2ce8447bd/download/BahasaRojak_Datasets.zip",
|
44 |
+
}
|
45 |
+
|
46 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
47 |
+
|
48 |
+
_SOURCE_VERSION = "1.0.0"
|
49 |
+
|
50 |
+
_SEACROWD_VERSION = "2024.06.20"
|
51 |
+
|
52 |
+
|
53 |
+
class SentiBahasaRojakDataset(datasets.GeneratorBasedBuilder):
|
54 |
+
"""The BRCC (Bahasa Rojak Crawled Corpus) is a novel dataset designed for the study of Bahasa Rojak,
|
55 |
+
a code-mixed dialect combining English, Malay, and Chinese, prevalent in Malaysia.
|
56 |
+
This corpus is intended for pre-training language models and sentiment analysis,
|
57 |
+
addressing the unique challenges of processing code-mixed languages."""
|
58 |
+
|
59 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
60 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
61 |
+
|
62 |
+
subsets = ["movie", "product", "stock"]
|
63 |
+
|
64 |
+
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}.{sub}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME}.{sub} source schema", schema="source", subset_id=f"{_DATASETNAME}.{sub}",) for sub in subsets] + [
|
65 |
+
SEACrowdConfig(
|
66 |
+
name=f"{_DATASETNAME}.{sub}_seacrowd_text",
|
67 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
68 |
+
description=f"{_DATASETNAME}.{sub} SEACrowd schema",
|
69 |
+
schema="seacrowd_text",
|
70 |
+
subset_id=f"{_DATASETNAME}.{sub}",
|
71 |
+
)
|
72 |
+
for sub in subsets
|
73 |
+
]
|
74 |
+
|
75 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}.movie_source"
|
76 |
+
LABELS = ["positive", "negative"]
|
77 |
+
|
78 |
+
def _info(self) -> datasets.DatasetInfo:
|
79 |
+
if self.config.schema == "source":
|
80 |
+
features = datasets.Features(
|
81 |
+
{
|
82 |
+
"text": datasets.Value("string"),
|
83 |
+
"label": datasets.ClassLabel(names=self.LABELS),
|
84 |
+
}
|
85 |
+
)
|
86 |
+
elif self.config.schema == "seacrowd_text":
|
87 |
+
features = schemas.text_features(self.LABELS)
|
88 |
+
|
89 |
+
return datasets.DatasetInfo(
|
90 |
+
description=_DESCRIPTION,
|
91 |
+
features=features,
|
92 |
+
homepage=_HOMEPAGE,
|
93 |
+
license=_LICENSE,
|
94 |
+
citation=_CITATION,
|
95 |
+
)
|
96 |
+
|
97 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
98 |
+
"""Returns SplitGenerators."""
|
99 |
+
urls = _URLS[_DATASETNAME]
|
100 |
+
data_dir = dl_manager.download_and_extract(urls)
|
101 |
+
data_dir = os.path.join(data_dir, "BahasaRojak Datasets", "SentiBahasaRojak")
|
102 |
+
|
103 |
+
subset = self.config.name.split(".")[-1].split("_")[0]
|
104 |
+
subset_dir = os.path.join(data_dir, f"SentiBahasaRojak-{subset.capitalize()}")
|
105 |
+
filepath = {}
|
106 |
+
if subset == "stock":
|
107 |
+
for split in ["train", "valid", "test"]:
|
108 |
+
filepath[split] = os.path.join(subset_dir, f"{split}_labeled.tsv")
|
109 |
+
else:
|
110 |
+
for split in ["train", "valid", "test"]:
|
111 |
+
filepath[split] = os.path.join(subset_dir, f"mix.{split}")
|
112 |
+
|
113 |
+
return [
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.TRAIN,
|
116 |
+
gen_kwargs={
|
117 |
+
"filepath": filepath["train"],
|
118 |
+
"split": "train",
|
119 |
+
},
|
120 |
+
),
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TEST,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepath": filepath["test"],
|
125 |
+
"split": "test",
|
126 |
+
},
|
127 |
+
),
|
128 |
+
datasets.SplitGenerator(
|
129 |
+
name=datasets.Split.VALIDATION,
|
130 |
+
gen_kwargs={
|
131 |
+
"filepath": filepath["valid"],
|
132 |
+
"split": "valid",
|
133 |
+
},
|
134 |
+
),
|
135 |
+
]
|
136 |
+
|
137 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
138 |
+
"""Yields examples as (key, example) tuples."""
|
139 |
+
if filepath.endswith(".tsv"):
|
140 |
+
with open(filepath, encoding="utf-8") as file:
|
141 |
+
reader = csv.reader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
142 |
+
for row_idx, row in enumerate(reader):
|
143 |
+
if self.config.schema == "source":
|
144 |
+
yield row_idx, {
|
145 |
+
"text": row[0],
|
146 |
+
"label": "positive" if row[1] == 1 else "negative",
|
147 |
+
}
|
148 |
+
elif self.config.schema == "seacrowd_text":
|
149 |
+
yield row_idx, {
|
150 |
+
"id": row_idx,
|
151 |
+
"text": row[0],
|
152 |
+
"label": "positive" if row[1] == 1 else "negative",
|
153 |
+
}
|
154 |
+
else:
|
155 |
+
labelpath = filepath + ".label"
|
156 |
+
with open(filepath, encoding="utf-8") as file, open(labelpath, encoding="utf-8") as label_file:
|
157 |
+
for row_idx, (text, label) in enumerate(zip(file, label_file)):
|
158 |
+
if self.config.schema == "source":
|
159 |
+
yield row_idx, {
|
160 |
+
"text": text.strip(),
|
161 |
+
"label": label.strip(),
|
162 |
+
}
|
163 |
+
elif self.config.schema == "seacrowd_text":
|
164 |
+
yield row_idx, {
|
165 |
+
"id": row_idx,
|
166 |
+
"text": text.strip(),
|
167 |
+
"label": label.strip(),
|
168 |
+
}
|