|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_conll_data |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{8355036, |
|
author={Alfina, Ika and Savitri, Septiviana and Fanany, Mohamad Ivan}, |
|
title={Modified DBpedia entities expansion for tagging automatically NER dataset}, |
|
booktitle={2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, |
|
pages={216-221}, |
|
year={2017}, |
|
url={https://ieeexplore.ieee.org/document/8355036}, |
|
doi={10.1109/ICACSIS.2017.8355036}} |
|
|
|
@INPROCEEDINGS{7872784, |
|
author={Alfina, Ika and Manurung, Ruli and Fanany, Mohamad Ivan}, |
|
booktitle={2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, |
|
title={DBpedia entities expansion in automatically building dataset for Indonesian NER}, |
|
year={2016}, |
|
pages={335-340}, |
|
doi={10.1109/ICACSIS.2016.7872784}} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "singgalang" |
|
|
|
_DESCRIPTION = """\ |
|
Rule-based annotation Indonesian NER Dataset of 48,957 sentences or 1,478,286 tokens. |
|
Annotation conforms the Stanford-NER format (https://stanfordnlp.github.io/CoreNLP/ner.html) for 3 NER tags of Person, Organisation, and Place. |
|
This dataset consists of 41,297, 14,770, and 82,179 tokens of entity (respectively) from over 14, 6, and 5 rules. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ir-nlp-csui/singgalang" |
|
|
|
_LICENSE = """\ |
|
You can use this dataset for free. You don't need our permission to use it. Please cite our paper if your work uses our data in your publication. |
|
Please note that you are not allowed to create a copy of this dataset and share it publicly in your own repository without our permission.\ |
|
""" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/ir-nlp-csui/singgalang/main/SINGGALANG.tsv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class SinggalangDataset(datasets.GeneratorBasedBuilder): |
|
"""Rule-based annotation Indonesian NER Dataset of 48,957 sentences with 3 NER tags""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
label_classes = [ |
|
"O", |
|
"Person", |
|
"Organisation", |
|
"Place", |
|
] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_seq_label", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} Nusantara schema", |
|
schema="seacrowd_seq_label", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"sentence": [datasets.Value("string")], |
|
"label": [datasets.Value("string")], |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
url = _URLS[_DATASETNAME] |
|
data_path = dl_manager.download(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
dataset = load_conll_data(filepath) |
|
|
|
if self.config.schema == "source": |
|
for key, ex in enumerate(dataset): |
|
yield key, ex |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
for key, ex in enumerate(dataset): |
|
yield key, { |
|
"id": str(key), |
|
"tokens": ex["sentence"], |
|
"labels": ex["label"], |
|
} |
|
|