Datasets:

Languages:
Thai
ArXiv:
License:
holylovenia commited on
Commit
f3b1af6
1 Parent(s): 808459b

Upload thai_databricks_dolly.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. thai_databricks_dolly.py +114 -0
thai_databricks_dolly.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import Dict, List, Tuple
3
+
4
+ import datasets
5
+ import pandas as pd
6
+ from datasets.download.download_manager import DownloadManager
7
+
8
+ from seacrowd.utils import schemas
9
+ from seacrowd.utils.configs import SEACrowdConfig
10
+ from seacrowd.utils.constants import Licenses, Tasks
11
+
12
+ # No paper citation found.
13
+ _CITATION = ""
14
+
15
+ _LOCAL = False
16
+ _LANGUAGES = ["tha"]
17
+ _DATASETNAME = "thai_databricks_dolly"
18
+ _DESCRIPTION = """\
19
+ This is a Thai-instructed dataset translated from databricks-dolly-15k using
20
+ Google Cloud Translation. databricks-dolly-15k is an open-source dataset of
21
+ instruction-following records generated by thousands of Databricks employees in
22
+ several behavioral categories outlined in the InstructGPT paper, including
23
+ brainstorming, classification, closed QA, generation, information extraction,
24
+ open QA, and summarization.
25
+ """
26
+
27
+ _HOMEPAGE = "https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th"
28
+ _LICENSE = Licenses.CC_BY_SA_3_0.value
29
+ _URL = "https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th/resolve/main/databricks-dolly-15k-th.parquet"
30
+ _SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING]
31
+ _SOURCE_VERSION = "1.0.0"
32
+ _SEACROWD_VERSION = "2024.06.20"
33
+
34
+
35
+ class ThaiDatabricksDollyDataset(datasets.GeneratorBasedBuilder):
36
+ """Thai Databricks Dolly Dataset"""
37
+
38
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
39
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
40
+
41
+ SEACROWD_SCHEMA_NAME = "t2t"
42
+
43
+ BUILDER_CONFIGS = [
44
+ SEACrowdConfig(
45
+ name=f"{_DATASETNAME}_source",
46
+ version=SOURCE_VERSION,
47
+ description=f"{_DATASETNAME} source schema",
48
+ schema="source",
49
+ subset_id=_DATASETNAME,
50
+ ),
51
+ SEACrowdConfig(
52
+ name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
53
+ version=SEACROWD_VERSION,
54
+ description=f"{_DATASETNAME} SEACrowd schema",
55
+ schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
56
+ subset_id=_DATASETNAME,
57
+ ),
58
+ ]
59
+
60
+ DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
61
+
62
+ def _info(self) -> datasets.DatasetInfo:
63
+ if self.config.schema == "source":
64
+ features = datasets.Features(
65
+ {
66
+ "instruction": datasets.Value("string"),
67
+ "context": datasets.Value("string"),
68
+ "response": datasets.Value("string"),
69
+ "category": datasets.Value("string"),
70
+ }
71
+ )
72
+ elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
73
+ features = schemas.text2text_features
74
+ return datasets.DatasetInfo(
75
+ description=_DESCRIPTION,
76
+ features=features,
77
+ homepage=_HOMEPAGE,
78
+ license=_LICENSE,
79
+ citation=_CITATION,
80
+ )
81
+
82
+ def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
83
+ """Returns SplitGenerators."""
84
+ data_file = Path(dl_manager.download_and_extract(_URL))
85
+ return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})]
86
+
87
+ def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
88
+ """Yield examples as (key, example) tuples"""
89
+ # pyarrow is an implicit dependency to load the parquet files
90
+ df = pd.read_parquet(filepath, engine="pyarrow")
91
+ for idx, row in df.iterrows():
92
+ instruction = row.get("instruction").strip()
93
+ context = row.get("context").strip()
94
+ response = row.get("response").strip()
95
+ category = row.get("category").strip()
96
+ if self.config.schema == "source":
97
+ example = {
98
+ "instruction": instruction,
99
+ "context": context,
100
+ "response": response,
101
+ "category": category,
102
+ }
103
+ elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
104
+ text_1 = f"Context: {context}\n\n{instruction}" if context else instruction
105
+ text_2 = response
106
+ example = {
107
+ "id": str(idx),
108
+ "text_1": text_1,
109
+ "text_2": text_2,
110
+ "text_1_name": "context_and_instruction",
111
+ "text_2_name": "response",
112
+ }
113
+
114
+ yield idx, example