|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{imperial2019sentiment, |
|
title={Sentiment Analysis of Typhoon Related Tweets using Standard and Bidirectional Recurrent Neural Networks}, |
|
author={Joseph Marvin Imperial and Jeyrome Orosco and Shiela Mae Mazo and Lany Maceda}, |
|
year={2019}, |
|
eprint={1908.01765}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.NE} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "typhoon_yolanda_tweets" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during, |
|
and after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three |
|
sentiment categories: positive, negative, and neutral. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/imperialite/Philippine-Languages-Online-Corpora/tree/master/Tweets/Annotated%20Yolanda" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["fil"] |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_ROOT_URL = "https://raw.githubusercontent.com/imperialite/Philippine-Languages-Online-Corpora/master/Tweets/Annotated%20Yolanda/" |
|
_URLS = {"train": {-1: _ROOT_URL + "train/-1.txt", 0: _ROOT_URL + "train/0.txt", 1: _ROOT_URL + "train/1.txt"}, "test": {-1: _ROOT_URL + "test/-1.txt", 0: _ROOT_URL + "test/0.txt", 1: _ROOT_URL + "test/1.txt"}} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
class TyphoonYolandaTweets(datasets.GeneratorBasedBuilder): |
|
""" |
|
The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during, and |
|
after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three sentiment |
|
categories: positive, negative, and neutral. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="typhoon_yolanda_tweets_source", |
|
version=SOURCE_VERSION, |
|
description="Typhoon Yolanda Tweets source schema", |
|
schema="source", |
|
subset_id="typhoon_yolanda_tweets", |
|
), |
|
SEACrowdConfig( |
|
name="typhoon_yolanda_tweets_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="Typhoon Yolanda Tweets SEACrowd schema", |
|
schema="seacrowd_text", |
|
subset_id="typhoon_yolanda_tweets", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "typhoon_yolanda_tweets_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(["-1", "0", "1"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
emos = [-1, 0, 1] |
|
if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text": |
|
train_path = dl_manager.download_and_extract({emo: _URLS["train"][emo] for emo in emos}) |
|
|
|
test_path = dl_manager.download_and_extract({emo: _URLS["test"][emo] for emo in emos}) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_path, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
if self.config.schema != "source" and self.config.schema != "seacrowd_text": |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
df = pd.DataFrame(columns=["text", "label"]) |
|
|
|
if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text": |
|
for emo, file in filepath.items(): |
|
with open(file) as f: |
|
t = f.readlines() |
|
l = [str(emo)]*(len(t)) |
|
tmp_df = pd.DataFrame.from_dict({"text": t, "label": l}) |
|
df = pd.concat([df, tmp_df], ignore_index=True) |
|
|
|
for row in df.itertuples(): |
|
ex = {"id": str(row.Index), "text": row.text, "label": row.label} |
|
yield row.Index, ex |
|
|