import os from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @misc{imperial2019sentiment, title={Sentiment Analysis of Typhoon Related Tweets using Standard and Bidirectional Recurrent Neural Networks}, author={Joseph Marvin Imperial and Jeyrome Orosco and Shiela Mae Mazo and Lany Maceda}, year={2019}, eprint={1908.01765}, archivePrefix={arXiv}, primaryClass={cs.NE} } """ _DATASETNAME = "typhoon_yolanda_tweets" _DESCRIPTION = """\ The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during, and after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three sentiment categories: positive, negative, and neutral. """ _HOMEPAGE = "https://github.com/imperialite/Philippine-Languages-Online-Corpora/tree/master/Tweets/Annotated%20Yolanda" _LOCAL = False _LANGUAGES = ["fil"] _LICENSE = Licenses.CC_BY_4_0.value _ROOT_URL = "https://raw.githubusercontent.com/imperialite/Philippine-Languages-Online-Corpora/master/Tweets/Annotated%20Yolanda/" _URLS = {"train": {-1: _ROOT_URL + "train/-1.txt", 0: _ROOT_URL + "train/0.txt", 1: _ROOT_URL + "train/1.txt"}, "test": {-1: _ROOT_URL + "test/-1.txt", 0: _ROOT_URL + "test/0.txt", 1: _ROOT_URL + "test/1.txt"}} _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class TyphoonYolandaTweets(datasets.GeneratorBasedBuilder): """ The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during, and after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three sentiment categories: positive, negative, and neutral. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="typhoon_yolanda_tweets_source", version=SOURCE_VERSION, description="Typhoon Yolanda Tweets source schema", schema="source", subset_id="typhoon_yolanda_tweets", ), SEACrowdConfig( name="typhoon_yolanda_tweets_seacrowd_text", version=SEACROWD_VERSION, description="Typhoon Yolanda Tweets SEACrowd schema", schema="seacrowd_text", subset_id="typhoon_yolanda_tweets", ), ] DEFAULT_CONFIG_NAME = "typhoon_yolanda_tweets_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_text": features = schemas.text_features(["-1", "0", "1"]) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: emos = [-1, 0, 1] if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text": train_path = dl_manager.download_and_extract({emo: _URLS["train"][emo] for emo in emos}) test_path = dl_manager.download_and_extract({emo: _URLS["test"][emo] for emo in emos}) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": test_path, "split": "test", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: if self.config.schema != "source" and self.config.schema != "seacrowd_text": raise ValueError(f"Invalid config: {self.config.name}") df = pd.DataFrame(columns=["text", "label"]) if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text": for emo, file in filepath.items(): with open(file) as f: t = f.readlines() l = [str(emo)]*(len(t)) tmp_df = pd.DataFrame.from_dict({"text": t, "label": l}) df = pd.concat([df, tmp_df], ignore_index=True) for row in df.itertuples(): ex = {"id": str(row.Index), "text": row.text, "label": row.label} yield row.Index, ex