|
|
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{thai-etal-2022-uit, |
|
title = "{UIT}-{V}i{C}o{V}19{QA}: A Dataset for {COVID}-19 Community-based Question Answering on {V}ietnamese Language", |
|
author = "Thai, Triet and Thao-Ha, Ngan Chu and Vo, Anh and Luu, Son", |
|
editor = "Dita, Shirley and Trillanes, Arlene and Lucas, Rochelle Irene", |
|
booktitle = "Proceedings of the 36th Pacific Asia Conference on Language, Information and Computation", |
|
month = oct, |
|
year = "2022", |
|
address = "Manila, Philippines", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.paclic-1.88", |
|
pages = "801--810", |
|
} |
|
""" |
|
_DATASETNAME = "uit_vicov19qa" |
|
_DESCRIPTION = """\ |
|
UIT-ViCoV19QA is the first Vietnamese community-based question answering dataset for developing question answering |
|
systems for COVID-19. The dataset comprises 4,500 question-answer pairs collected from trusted medical sources, |
|
with at least one answer and at most four unique paraphrased answers per question. This dataset contains 1800 questions |
|
that have at least two answers, 700 questions have at least three answers and half of them have a maximum of four paraphrased |
|
answers. |
|
""" |
|
_HOMEPAGE = "https://github.com/triet2397/UIT-ViCoV19QA" |
|
_LANGUAGES = ["vie"] |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_PAPER_URL = "https://aclanthology.org/2022.paclic-1.88" |
|
_LOCAL = False |
|
_URLS = { |
|
"train": { |
|
"1_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/1_ans/UIT-ViCoV19QA_train.csv", |
|
"2_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/2_ans/UIT-ViCoV19QA_train.csv", |
|
"3_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/3_ans/UIT-ViCoV19QA_train.csv", |
|
"4_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/4_ans/UIT-ViCoV19QA_train.csv", |
|
}, |
|
"val": { |
|
"1_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/1_ans/UIT-ViCoV19QA_val.csv", |
|
"2_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/2_ans/UIT-ViCoV19QA_val.csv", |
|
"3_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/3_ans/UIT-ViCoV19QA_val.csv", |
|
"4_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/4_ans/UIT-ViCoV19QA_val.csv", |
|
}, |
|
"test": { |
|
"1_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/1_ans/UIT-ViCoV19QA_test.csv", |
|
"2_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/2_ans/UIT-ViCoV19QA_test.csv", |
|
"3_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/3_ans/UIT-ViCoV19QA_test.csv", |
|
"4_ans": "https://raw.githubusercontent.com/triet2397/UIT-ViCoV19QA/main/dataset/4_ans/UIT-ViCoV19QA_test.csv", |
|
}, |
|
} |
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ViHealthQADataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
This is a SeaCrowed dataloader for dataset uit_vicov19qa, The dataset comprises 4,500 question-answer pairs collected from trusted medical sources, |
|
with at least one answer and at most four unique paraphrased answers per question. |
|
""" |
|
|
|
subsets = ["1_ans", "2_ans", "3_ans", "4_ans"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", subset_id=f"{_DATASETNAME}"), |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_qa", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id=f"{_DATASETNAME}", |
|
) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
else: |
|
raise ValueError(f"No schema matched for {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["val"], |
|
"split": "val", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Dict, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
print(f"Generating examples for split {split}") |
|
sample_id = -1 |
|
for path in filepath.values(): |
|
raw_examples = pd.read_csv(path, na_filter=False, delimiter="|") |
|
for eid, exam in raw_examples.iterrows(): |
|
sample_id += 1 |
|
exam_id = exam[0] |
|
exam_quest = exam[1] |
|
exam_answers = exam[2:].values |
|
if self.config.schema == "source": |
|
yield sample_id, {"id": str(exam_id), |
|
"question": exam_quest, |
|
"answers": exam_answers |
|
} |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
yield sample_id, {"id": str(sample_id), |
|
"question_id": exam_id, |
|
"document_id": str(sample_id), |
|
"question": exam_quest, |
|
"type": None, |
|
"choices": [], |
|
"context": None, |
|
"answer": exam_answers, |
|
"meta": {} |
|
} |
|
|