File size: 5,316 Bytes
d3e282d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """
@inproceedings{,
  author    = {Nguyen, Luan Thanh and Van Nguyen, Kiet and Nguyen,  Ngan Luu-Thuy},
  title     = {Constructive and Toxic Speech Detection for Open-domain Social Media Comments in Vietnamese},
  booktitle = {Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices},
  year      = {2021},
  publisher = {Springer International Publishing},
  address   = {Kuala Lumpur, Malaysia},
  pages     = {572--583},
}
"""

_LOCAL = False
_LANGUAGES = ["vie"]
_DATASETNAME = "uit_victsd"
_DESCRIPTION = """
The UIT-ViCTSD (Vietnamese Constructive and Toxic Speech Detection dataset) is a compilation of 10,000 human-annotated
comments intended for constructive and toxic comments detection. The dataset spans 10 domains, reflecting the diverse topics
and expressions found in social media interactions among Vietnamese users.
"""

_HOMEPAGE = "https://github.com/tarudesu/ViCTSD"
_LICENSE = Licenses.UNKNOWN.value
_URL = "https://huggingface.co/datasets/tarudesu/ViCTSD"


_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION, Tasks.ABUSIVE_LANGUAGE_PREDICTION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class UiTViCTSDDataset(datasets.GeneratorBasedBuilder):
    """
    Dataset of Vietnamese social media comments annotated
    for constructiveness and toxicity.
    """

    SUBSETS = ["constructiveness", "toxicity"]
    CLASS_LABELS = [0, 1]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{subset}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} source schema for {subset} subset",
            schema="source",
            subset_id=f"{_DATASETNAME}_{subset}",
        )
        for subset in SUBSETS
    ] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{subset}_seacrowd_text",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME} SEACrowd schema for {subset} subset",
            schema="seacrowd_text",
            subset_id=f"{_DATASETNAME}_{subset}",
        )
        for subset in SUBSETS
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_constructiveness_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "Unnamed: 0": datasets.Value("int64"),  # Column name missing in original dataset
                    "Comment": datasets.Value("string"),
                    "Constructiveness": datasets.ClassLabel(names=self.CLASS_LABELS),
                    "Toxicity": datasets.ClassLabel(names=self.CLASS_LABELS),
                    "Title": datasets.Value("string"),
                    "Topic": datasets.Value("string"),
                }
            )

        elif self.config.schema == "seacrowd_text":
            features = schemas.text_features(label_names=self.CLASS_LABELS)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        # dl_manager not used since dataloader uses HF 'load_dataset'
        return [datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) for split in (datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST)]

    def _load_hf_data_from_remote(self, split: str) -> datasets.DatasetDict:
        """Load dataset from HuggingFace."""
        HF_REMOTE_REF = "/".join(_URL.split("/")[-2:])
        _hf_dataset_source = datasets.load_dataset(HF_REMOTE_REF, split=split)
        return _hf_dataset_source

    def _generate_examples(self, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        data = self._load_hf_data_from_remote(split=split)
        for index, row in enumerate(data):
            if self.config.schema == "source":
                example = row

            elif self.config.schema == "seacrowd_text":
                if "constructiveness" in self.config.name:
                    label = row["Constructiveness"]
                elif "toxicity" in self.config.name:
                    label = row["Toxicity"]
                example = {"id": str(index), "text": row["Comment"], "label": label}
            yield index, example