Datasets:

Languages:
Vietnamese
ArXiv:
License:
holylovenia commited on
Commit
cffd665
1 Parent(s): 9e96dc7

Upload uit_vsfc.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. uit_vsfc.py +203 -0
uit_vsfc.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from pathlib import Path
17
+ from typing import Dict, List, Tuple
18
+
19
+ import datasets
20
+
21
+ from seacrowd.utils import schemas
22
+ from seacrowd.utils.configs import SEACrowdConfig
23
+ from seacrowd.utils.constants import Licenses, Tasks
24
+
25
+ _CITATION = """\
26
+ @inproceedings{van2018uit,
27
+ title={UIT-VSFC: Vietnamese students’ feedback corpus for sentiment analysis},
28
+ author={Van Nguyen, Kiet and Nguyen, Vu Duc and Nguyen, Phu XV and Truong, Tham TH and Nguyen, Ngan Luu-Thuy},
29
+ booktitle={2018 10th international conference on knowledge and systems engineering (KSE)},
30
+ pages={19--24},
31
+ year={2018},
32
+ organization={IEEE}
33
+ }
34
+ """
35
+
36
+
37
+ _DATASETNAME = "uit_vsfc"
38
+
39
+ _DESCRIPTION = """\
40
+ This corpus consists of student feedback obtained from end-of-semester surveys at a Vietnamese university.
41
+ Feedback is classified into four possible topics: lecturer, curriculum, facility or others.
42
+ Feedback is also labeled as one of three sentiment polarities: positive, negative or neutral.
43
+ """
44
+
45
+ _HOMEPAGE = "https://drive.google.com/drive/folders/1HooABJyrddVGzll7fgkJ6VzkG_XuWfRu"
46
+
47
+ _LANGUAGES = ["vie"]
48
+
49
+ _LICENSE = Licenses.UNKNOWN.value
50
+
51
+ _LOCAL = False
52
+
53
+
54
+ _URLS = {
55
+ "train": {
56
+ "sentences": "https://drive.google.com/uc?id=1nzak5OkrheRV1ltOGCXkT671bmjODLhP&export=download",
57
+ "sentiments": "https://drive.google.com/uc?id=1ye-gOZIBqXdKOoi_YxvpT6FeRNmViPPv&export=download",
58
+ "topics": "https://drive.google.com/uc?id=14MuDtwMnNOcr4z_8KdpxprjbwaQ7lJ_C&export=download",
59
+ },
60
+ "validation": {
61
+ "sentences": "https://drive.google.com/uc?id=1sMJSR3oRfPc3fe1gK-V3W5F24tov_517&export=download",
62
+ "sentiments": "https://drive.google.com/uc?id=1GiY1AOp41dLXIIkgES4422AuDwmbUseL&export=download",
63
+ "topics": "https://drive.google.com/uc?id=1DwLgDEaFWQe8mOd7EpF-xqMEbDLfdT-W&export=download",
64
+ },
65
+ "test": {
66
+ "sentences": "https://drive.google.com/uc?id=1aNMOeZZbNwSRkjyCWAGtNCMa3YrshR-n&export=download",
67
+ "sentiments": "https://drive.google.com/uc?id=1vkQS5gI0is4ACU58-AbWusnemw7KZNfO&export=download",
68
+ "topics": "https://drive.google.com/uc?id=1_ArMpDguVsbUGl-xSMkTF_p5KpZrmpSB&export=download",
69
+ },
70
+ }
71
+
72
+ _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.TOPIC_MODELING]
73
+
74
+ _SOURCE_VERSION = "1.0.0"
75
+
76
+ _SEACROWD_VERSION = "2024.06.20"
77
+
78
+
79
+ class UITVSFCDataset(datasets.GeneratorBasedBuilder):
80
+ """This corpus consists of student feedback obtained from end-of-semester surveys at a Vietnamese university.
81
+ Feedback is classified into four possible topics: lecturer, curriculum, facility or others.
82
+ Feedback is also labeled as one of three sentiment polarities: positive, negative or neutral."""
83
+
84
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
85
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
86
+
87
+ SENTIMENT_LABEL_CLASSES = ["positive", "negative", "neutral"]
88
+ TOPIC_LABEL_CLASSES = ["lecturer", "training_program", "others", "facility"]
89
+
90
+ SEACROWD_SCHEMA_NAME = "text"
91
+
92
+ BUILDER_CONFIGS = [
93
+ SEACrowdConfig(
94
+ name=f"{_DATASETNAME}_sentiment_source",
95
+ version=SOURCE_VERSION,
96
+ description=f"{_DATASETNAME} source schema",
97
+ schema="source",
98
+ subset_id=_DATASETNAME,
99
+ ),
100
+ SEACrowdConfig(
101
+ name=f"{_DATASETNAME}_topic_source",
102
+ version=SOURCE_VERSION,
103
+ description=f"{_DATASETNAME} source schema",
104
+ schema="source",
105
+ subset_id=_DATASETNAME,
106
+ ),
107
+ SEACrowdConfig(
108
+ name=f"{_DATASETNAME}_sentiment_seacrowd_{SEACROWD_SCHEMA_NAME}",
109
+ version=SEACROWD_VERSION,
110
+ description=f"{_DATASETNAME} SEACrowd schema",
111
+ schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
112
+ subset_id=_DATASETNAME,
113
+ ),
114
+ SEACrowdConfig(
115
+ name=f"{_DATASETNAME}_topic_seacrowd_{SEACROWD_SCHEMA_NAME}",
116
+ version=SEACROWD_VERSION,
117
+ description=f"{_DATASETNAME} SEACrowd schema",
118
+ schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
119
+ subset_id=_DATASETNAME,
120
+ ),
121
+ ]
122
+
123
+ DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
124
+
125
+ def _info(self) -> datasets.DatasetInfo:
126
+ if self.config.schema == "source":
127
+ features = datasets.Features(
128
+ {
129
+ "sentence": datasets.Value("string"),
130
+ "sentiment": datasets.ClassLabel(names=self.SENTIMENT_LABEL_CLASSES),
131
+ "topic": datasets.ClassLabel(names=self.TOPIC_LABEL_CLASSES),
132
+ }
133
+ )
134
+ elif self.config.name == f"{_DATASETNAME}_sentiment_seacrowd_{self.SEACROWD_SCHEMA_NAME}":
135
+ features = schemas.text_features(self.SENTIMENT_LABEL_CLASSES)
136
+ elif self.config.name == f"{_DATASETNAME}_topic_seacrowd_{self.SEACROWD_SCHEMA_NAME}":
137
+ features = schemas.text_features(self.TOPIC_LABEL_CLASSES)
138
+
139
+ return datasets.DatasetInfo(
140
+ description=_DESCRIPTION,
141
+ features=features,
142
+ homepage=_HOMEPAGE,
143
+ license=_LICENSE,
144
+ citation=_CITATION,
145
+ )
146
+
147
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
148
+ data_dir = dl_manager.download(_URLS)
149
+
150
+ return [
151
+ datasets.SplitGenerator(
152
+ name=datasets.Split.TRAIN,
153
+ gen_kwargs={
154
+ "sentences_path": data_dir["train"]["sentences"],
155
+ "sentiments_path": data_dir["train"]["sentiments"],
156
+ "topics_path": data_dir["train"]["topics"],
157
+ "split": "train",
158
+ },
159
+ ),
160
+ datasets.SplitGenerator(
161
+ name=datasets.Split.TEST,
162
+ gen_kwargs={
163
+ "sentences_path": data_dir["test"]["sentences"],
164
+ "sentiments_path": data_dir["test"]["sentiments"],
165
+ "topics_path": data_dir["test"]["topics"],
166
+ "split": "test",
167
+ },
168
+ ),
169
+ datasets.SplitGenerator(
170
+ name=datasets.Split.VALIDATION,
171
+ gen_kwargs={
172
+ "sentences_path": data_dir["validation"]["sentences"],
173
+ "sentiments_path": data_dir["validation"]["sentiments"],
174
+ "topics_path": data_dir["validation"]["topics"],
175
+ "split": "dev",
176
+ },
177
+ ),
178
+ ]
179
+
180
+ def _generate_examples(self, sentences_path: Path, sentiments_path: Path, topics_path: Path, split: str) -> Tuple[int, Dict]:
181
+ """Yields examples as (key, example) tuples."""
182
+
183
+ if self.config.schema == "source":
184
+ with open(sentences_path, encoding="utf-8") as sentences, open(sentiments_path, encoding="utf-8") as sentiments, open(topics_path, encoding="utf-8") as topics:
185
+ for key, (sentence, sentiment, topic) in enumerate(zip(sentences, sentiments, topics)):
186
+ yield key, {
187
+ "sentence": sentence.strip(),
188
+ "sentiment": int(sentiment.strip()),
189
+ "topic": int(topic.strip()),
190
+ }
191
+
192
+ elif self.config.name == f"{_DATASETNAME}_sentiment_seacrowd_{self.SEACROWD_SCHEMA_NAME}":
193
+ with open(sentences_path, encoding="utf-8") as sentences, open(sentiments_path, encoding="utf-8") as sentiments:
194
+ for key, (sentence, sentiment) in enumerate(zip(sentences, sentiments)):
195
+ yield key, {"id": str(key), "text": sentence.strip(), "label": int(sentiment.strip())}
196
+ elif self.config.name == f"{_DATASETNAME}_topic_seacrowd_{self.SEACROWD_SCHEMA_NAME}":
197
+ with open(sentences_path, encoding="utf-8") as sentences, open(topics_path, encoding="utf-8") as topics:
198
+ for key, (sentence, topic) in enumerate(zip(sentences, topics)):
199
+ yield key, {
200
+ "id": str(key),
201
+ "text": sentence.strip(),
202
+ "label": int(topic.strip()),
203
+ }