File size: 7,771 Bytes
e92ecac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.common_parser import load_ud_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses
_CITATION = """\
@inproceedings{jindal-etal-2022-universal,
title = "Universal {P}roposition {B}ank 2.0",
author = "Jindal, Ishan and
Rademaker, Alexandre and
Ulewicz, Micha{l} and
Linh, Ha and
Nguyen, Huyen and
Tran, Khoi-Nguyen and
Zhu, Huaiyu and
Li, Yunyao",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.181",
pages = "1700--1711",
}}
"""
_DATASETNAME = "up2"
_DESCRIPTION = """\
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
"""
_HOMEPAGE = "https://universalpropositions.github.io/"
_LANGUAGES = ["ind", "vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = Licenses.CDLA_SHARING_1_0.value
_LOCAL = False
_URLS = {
split: {
"ind": [
f"https://raw.githubusercontent.com/UniversalPropositions/UP_Indonesian-GSD/main/id_gsd-up-{split}.conllup",
f"https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-GSD/master/id_gsd-ud-{split}.conllu",
# f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-{split}.conllu", # there are missing sent_id from the IndoLEM's dataset.
],
"vie": [
f"https://raw.githubusercontent.com/UniversalPropositions/UP_Vietnamese-VTB/main/vi_vtb-up-{split}.conllup",
# f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/master/vi_vtb-ud-{split}.conllu", # new data => mismatch.
f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/0edef6d63df949aea0494c6d4ff4f91bb1959019/vi_vtb-ud-{split}.conllu", # r2.8
],
}
for split in ["train", "test", "dev"]
}
_SUPPORTED_TASKS = []
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class UP2Dataset(datasets.GeneratorBasedBuilder):
"""
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
*[
SEACrowdConfig(
name=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}",
)
for _LANG in ["", *_LANGUAGES]
],
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"lang": datasets.Value("string"),
"source_sent_id": datasets.Value("string"),
"sent_id": datasets.Value("string"),
"text": datasets.Value("string"),
"id": [datasets.Value("string")],
"up:pred": [datasets.Value("string")],
"up:argheads": [datasets.Value("string")],
"up:argspans": [datasets.Value("string")],
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
_subset_id = self.config.subset_id.split("_")
if len(_subset_id) > 1:
_lang = _subset_id[1]
urls = {split: {_lang: urls_up_ud[_lang]} for split, urls_up_ud in _URLS.items()}
else:
urls = _URLS
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": data_dir["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": data_dir["test"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": data_dir["dev"],
},
),
]
def _generate_examples(self, filepaths: Dict[str, List[Path]]) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
_subset_id = self.config.subset_id.split("_")
_langs = [_subset_id[1]] if (len(_subset_id) > 1) else _LANGUAGES
for _lang in _langs:
data = list(load_ud_data(filepaths[_lang][0]))
sentid2text = {_b["sent_id"]: _b["text"] for _b in load_ud_data(filepaths[_lang][1])}
for cur_data in data:
txt_src = sentid2text[cur_data["sent_id"]]
txt_up = cur_data["text"].rsplit("..........", 1)[0].rstrip(" -")
assert txt_up == txt_src[: len(txt_up)], f"Text mismatch. Found '{txt_up}' in conllup but source is '{txt_src[:len(txt_up)]}'"
cur_data["text"] = txt_src
cur_data["lang"] = _lang
if self.config.schema == "source":
for key, example in enumerate(data):
yield f"{_lang}_{key}", example
|