Datasets:

ArXiv:
License:
File size: 7,771 Bytes
e92ecac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
"""
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils.common_parser import load_ud_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses

_CITATION = """\
@inproceedings{jindal-etal-2022-universal,
    title = "Universal {P}roposition {B}ank 2.0",
    author = "Jindal, Ishan  and
      Rademaker, Alexandre  and
      Ulewicz, Micha{l}  and
      Linh, Ha  and
      Nguyen, Huyen  and
      Tran, Khoi-Nguyen  and
      Zhu, Huaiyu  and
      Li, Yunyao",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2022.lrec-1.181",
    pages = "1700--1711",
}}
"""

_DATASETNAME = "up2"

_DESCRIPTION = """\
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
"""

_HOMEPAGE = "https://universalpropositions.github.io/"

_LANGUAGES = ["ind", "vie"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)

_LICENSE = Licenses.CDLA_SHARING_1_0.value

_LOCAL = False

_URLS = {
    split: {
        "ind": [
            f"https://raw.githubusercontent.com/UniversalPropositions/UP_Indonesian-GSD/main/id_gsd-up-{split}.conllup",
            f"https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-GSD/master/id_gsd-ud-{split}.conllu",
            # f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-{split}.conllu",   # there are missing sent_id from the IndoLEM's dataset.
        ],
        "vie": [
            f"https://raw.githubusercontent.com/UniversalPropositions/UP_Vietnamese-VTB/main/vi_vtb-up-{split}.conllup",
            # f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/master/vi_vtb-ud-{split}.conllu", # new data => mismatch.
            f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/0edef6d63df949aea0494c6d4ff4f91bb1959019/vi_vtb-ud-{split}.conllu",  # r2.8
        ],
    }
    for split in ["train", "test", "dev"]
}

_SUPPORTED_TASKS = []

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class UP2Dataset(datasets.GeneratorBasedBuilder):
    """
    Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
    Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
    It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        *[
            SEACrowdConfig(
                name=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}_source",
                version=datasets.Version(_SOURCE_VERSION),
                description=f"{_DATASETNAME} source schema",
                schema="source",
                subset_id=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}",
            )
            for _LANG in ["", *_LANGUAGES]
        ],
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "lang": datasets.Value("string"),
                    "source_sent_id": datasets.Value("string"),
                    "sent_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "id": [datasets.Value("string")],
                    "up:pred": [datasets.Value("string")],
                    "up:argheads": [datasets.Value("string")],
                    "up:argspans": [datasets.Value("string")],
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        _subset_id = self.config.subset_id.split("_")
        if len(_subset_id) > 1:
            _lang = _subset_id[1]
            urls = {split: {_lang: urls_up_ud[_lang]} for split, urls_up_ud in _URLS.items()}
        else:
            urls = _URLS
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": data_dir["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepaths": data_dir["test"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepaths": data_dir["dev"],
                },
            ),
        ]

    def _generate_examples(self, filepaths: Dict[str, List[Path]]) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        _subset_id = self.config.subset_id.split("_")
        _langs = [_subset_id[1]] if (len(_subset_id) > 1) else _LANGUAGES

        for _lang in _langs:
            data = list(load_ud_data(filepaths[_lang][0]))
            sentid2text = {_b["sent_id"]: _b["text"] for _b in load_ud_data(filepaths[_lang][1])}

            for cur_data in data:
                txt_src = sentid2text[cur_data["sent_id"]]
                txt_up = cur_data["text"].rsplit("..........", 1)[0].rstrip(" -")
                assert txt_up == txt_src[: len(txt_up)], f"Text mismatch. Found '{txt_up}' in conllup but source is '{txt_src[:len(txt_up)]}'"
                cur_data["text"] = txt_src
                cur_data["lang"] = _lang

            if self.config.schema == "source":
                for key, example in enumerate(data):
                    yield f"{_lang}_{key}", example