Datasets:

ArXiv:
License:
up2 / up2.py
holylovenia's picture
Upload up2.py with huggingface_hub
e92ecac verified
raw
history blame
7.77 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.common_parser import load_ud_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses
_CITATION = """\
@inproceedings{jindal-etal-2022-universal,
title = "Universal {P}roposition {B}ank 2.0",
author = "Jindal, Ishan and
Rademaker, Alexandre and
Ulewicz, Micha{l} and
Linh, Ha and
Nguyen, Huyen and
Tran, Khoi-Nguyen and
Zhu, Huaiyu and
Li, Yunyao",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.181",
pages = "1700--1711",
}}
"""
_DATASETNAME = "up2"
_DESCRIPTION = """\
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
"""
_HOMEPAGE = "https://universalpropositions.github.io/"
_LANGUAGES = ["ind", "vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = Licenses.CDLA_SHARING_1_0.value
_LOCAL = False
_URLS = {
split: {
"ind": [
f"https://raw.githubusercontent.com/UniversalPropositions/UP_Indonesian-GSD/main/id_gsd-up-{split}.conllup",
f"https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-GSD/master/id_gsd-ud-{split}.conllu",
# f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-{split}.conllu", # there are missing sent_id from the IndoLEM's dataset.
],
"vie": [
f"https://raw.githubusercontent.com/UniversalPropositions/UP_Vietnamese-VTB/main/vi_vtb-up-{split}.conllup",
# f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/master/vi_vtb-ud-{split}.conllu", # new data => mismatch.
f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/0edef6d63df949aea0494c6d4ff4f91bb1959019/vi_vtb-ud-{split}.conllu", # r2.8
],
}
for split in ["train", "test", "dev"]
}
_SUPPORTED_TASKS = []
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class UP2Dataset(datasets.GeneratorBasedBuilder):
"""
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset.
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence.
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
*[
SEACrowdConfig(
name=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}",
)
for _LANG in ["", *_LANGUAGES]
],
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"lang": datasets.Value("string"),
"source_sent_id": datasets.Value("string"),
"sent_id": datasets.Value("string"),
"text": datasets.Value("string"),
"id": [datasets.Value("string")],
"up:pred": [datasets.Value("string")],
"up:argheads": [datasets.Value("string")],
"up:argspans": [datasets.Value("string")],
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
_subset_id = self.config.subset_id.split("_")
if len(_subset_id) > 1:
_lang = _subset_id[1]
urls = {split: {_lang: urls_up_ud[_lang]} for split, urls_up_ud in _URLS.items()}
else:
urls = _URLS
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": data_dir["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": data_dir["test"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": data_dir["dev"],
},
),
]
def _generate_examples(self, filepaths: Dict[str, List[Path]]) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
_subset_id = self.config.subset_id.split("_")
_langs = [_subset_id[1]] if (len(_subset_id) > 1) else _LANGUAGES
for _lang in _langs:
data = list(load_ud_data(filepaths[_lang][0]))
sentid2text = {_b["sent_id"]: _b["text"] for _b in load_ud_data(filepaths[_lang][1])}
for cur_data in data:
txt_src = sentid2text[cur_data["sent_id"]]
txt_up = cur_data["text"].rsplit("..........", 1)[0].rstrip(" -")
assert txt_up == txt_src[: len(txt_up)], f"Text mismatch. Found '{txt_up}' in conllup but source is '{txt_src[:len(txt_up)]}'"
cur_data["text"] = txt_src
cur_data["lang"] = _lang
if self.config.schema == "source":
for key, example in enumerate(data):
yield f"{_lang}_{key}", example