# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset. Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence. It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning. """ from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils.common_parser import load_ud_data from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses _CITATION = """\ @inproceedings{jindal-etal-2022-universal, title = "Universal {P}roposition {B}ank 2.0", author = "Jindal, Ishan and Rademaker, Alexandre and Ulewicz, Micha{l} and Linh, Ha and Nguyen, Huyen and Tran, Khoi-Nguyen and Zhu, Huaiyu and Li, Yunyao", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.181", pages = "1700--1711", }} """ _DATASETNAME = "up2" _DESCRIPTION = """\ Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset. Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence. It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning. """ _HOMEPAGE = "https://universalpropositions.github.io/" _LANGUAGES = ["ind", "vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LICENSE = Licenses.CDLA_SHARING_1_0.value _LOCAL = False _URLS = { split: { "ind": [ f"https://raw.githubusercontent.com/UniversalPropositions/UP_Indonesian-GSD/main/id_gsd-up-{split}.conllup", f"https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-GSD/master/id_gsd-ud-{split}.conllu", # f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_GSD/id_gsd-ud-{split}.conllu", # there are missing sent_id from the IndoLEM's dataset. ], "vie": [ f"https://raw.githubusercontent.com/UniversalPropositions/UP_Vietnamese-VTB/main/vi_vtb-up-{split}.conllup", # f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/master/vi_vtb-ud-{split}.conllu", # new data => mismatch. f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/0edef6d63df949aea0494c6d4ff4f91bb1959019/vi_vtb-ud-{split}.conllu", # r2.8 ], } for split in ["train", "test", "dev"] } _SUPPORTED_TASKS = [] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class UP2Dataset(datasets.GeneratorBasedBuilder): """ Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset. Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence. It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ *[ SEACrowdConfig( name=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}", ) for _LANG in ["", *_LANGUAGES] ], ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "lang": datasets.Value("string"), "source_sent_id": datasets.Value("string"), "sent_id": datasets.Value("string"), "text": datasets.Value("string"), "id": [datasets.Value("string")], "up:pred": [datasets.Value("string")], "up:argheads": [datasets.Value("string")], "up:argspans": [datasets.Value("string")], } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" _subset_id = self.config.subset_id.split("_") if len(_subset_id) > 1: _lang = _subset_id[1] urls = {split: {_lang: urls_up_ud[_lang]} for split, urls_up_ud in _URLS.items()} else: urls = _URLS data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": data_dir["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepaths": data_dir["test"], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepaths": data_dir["dev"], }, ), ] def _generate_examples(self, filepaths: Dict[str, List[Path]]) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" _subset_id = self.config.subset_id.split("_") _langs = [_subset_id[1]] if (len(_subset_id) > 1) else _LANGUAGES for _lang in _langs: data = list(load_ud_data(filepaths[_lang][0])) sentid2text = {_b["sent_id"]: _b["text"] for _b in load_ud_data(filepaths[_lang][1])} for cur_data in data: txt_src = sentid2text[cur_data["sent_id"]] txt_up = cur_data["text"].rsplit("..........", 1)[0].rstrip(" -") assert txt_up == txt_src[: len(txt_up)], f"Text mismatch. Found '{txt_up}' in conllup but source is '{txt_src[:len(txt_up)]}'" cur_data["text"] = txt_src cur_data["lang"] = _lang if self.config.schema == "source": for key, example in enumerate(data): yield f"{_lang}_{key}", example