|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Vintext is a challenging scene text dataset for Vietnamese, where some characters are equivocal in the visual form due to accent symbols. |
|
This dataset contains 1500 fully annotated images from the original format. Each text instance is delineated by a quadrilateral bounding box and associated with the ground truth sequence of characters. |
|
The dataset is randomly split into 2 subsets for training (1,200 images) and testing (300 images). |
|
""" |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{vintext, |
|
author={Nguyen, Nguyen and Nguyen, Thu and Tran, Vinh and Tran, Minh-Triet and Ngo, Thanh Duc and Huu Nguyen, Thien and Hoai, Minh}, |
|
booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
title={Dictionary-guided Scene Text Recognition}, |
|
year={2021}, |
|
pages={7379-7388}, |
|
keywords={Training;Visualization;Computer vision;Casting;Dictionaries;Codes;Text recognition}, |
|
doi={10.1109/CVPR46437.2021.00730} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "vintext" |
|
|
|
_DESCRIPTION = """\ |
|
Vintext is a challenging scene text dataset for Vietnamese, where some characters are equivocal in the visual form due to accent symbols. |
|
This dataset contains 2000 fully annotated images with 56,084 text instances. Each text instance is delineated by a quadrilateral bounding box and associated with the ground truth sequence of characters. |
|
The dataset is randomly split into three subsets for training (1,200 images), validation (300 images), and testing (500 images). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/VinAIResearch/dict-guided" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.AGPL_3_0.value |
|
|
|
_LOCAL = False |
|
|
|
_GDRIVE_ID = "1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml" |
|
|
|
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class VintextDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Vintext is a challenging scene text dataset for Vietnamese, where some characters are equivocal in the visual form due to accent symbols. |
|
This dataset contains 1500 fully annotated images from the original format. Each text instance is delineated by a quadrilateral bounding box and associated with the ground truth sequence of characters. |
|
The dataset is randomly split into 2 subsets for training (1,200 images) and testing (300 images). |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_imtext", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_imtext", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"image_path": datasets.Value("string"), |
|
"annotations": datasets.Sequence( |
|
{ |
|
"x1": datasets.Value("int32"), |
|
"y1": datasets.Value("int32"), |
|
"x2": datasets.Value("int32"), |
|
"y2": datasets.Value("int32"), |
|
"x3": datasets.Value("int32"), |
|
"y3": datasets.Value("int32"), |
|
"x4": datasets.Value("int32"), |
|
"y4": datasets.Value("int32"), |
|
"transcript": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_imtext": |
|
features = schemas.image_text_features() |
|
features["metadata"]["annotations"] = datasets.Sequence( |
|
{ |
|
"x1": datasets.Value("int32"), |
|
"y1": datasets.Value("int32"), |
|
"x2": datasets.Value("int32"), |
|
"y2": datasets.Value("int32"), |
|
"x3": datasets.Value("int32"), |
|
"y3": datasets.Value("int32"), |
|
"x4": datasets.Value("int32"), |
|
"y4": datasets.Value("int32"), |
|
"transcript": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
try: |
|
import gdown |
|
except ImportError as err: |
|
raise ImportError("You need to install gdown (`pip install gdown`) to downloads a public file/folder from Google Drive.") from err |
|
|
|
zip_filepath = os.path.join(os.path.dirname(__file__), "vietnamese_original.zip") |
|
if not os.path.exists(zip_filepath): |
|
gdown.download(id=_GDRIVE_ID, output=zip_filepath) |
|
|
|
data_dir = dl_manager.extract(zip_filepath) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"imagepath": Path(data_dir) / "vietnamese/train_images", |
|
"labelpath": Path(data_dir) / "vietnamese/labels", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"imagepath": Path(data_dir) / "vietnamese/test_image", |
|
"labelpath": Path(data_dir) / "vietnamese/labels", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, imagepath: Path, labelpath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df_list = [] |
|
|
|
for image in os.listdir(imagepath): |
|
image_id = int(image.split(".")[0][2:]) |
|
label_file = os.path.join(labelpath, f"gt_{image_id}.txt") |
|
with open(label_file, "r") as f: |
|
label = f.read().strip() |
|
df_list.append({"id": image_id, "image_path": os.path.join(imagepath, image), "label": label}) |
|
|
|
if self.config.schema == "source": |
|
for i, row in enumerate(df_list): |
|
labels = [label.split(",") for label in row["label"].split("\n")] |
|
|
|
yield i, { |
|
"id": row["id"], |
|
"image_path": row["image_path"], |
|
"annotations": [ |
|
{ |
|
"x1": label[0], |
|
"y1": label[1], |
|
"x2": label[2], |
|
"y2": label[3], |
|
"x3": label[4], |
|
"y3": label[5], |
|
"x4": label[6], |
|
"y4": label[7], |
|
"transcript": label[8], |
|
} |
|
for label in labels |
|
], |
|
} |
|
|
|
elif self.config.schema == "seacrowd_imtext": |
|
for i, row in enumerate(df_list): |
|
labels = [label.split(",") for label in row["label"].split("\n")] |
|
|
|
yield i, { |
|
"id": row["id"], |
|
"image_paths": [row["image_path"]], |
|
"texts": None, |
|
"metadata": { |
|
"context": None, |
|
"labels": None, |
|
"annotations": [ |
|
{ |
|
"x1": label[0], |
|
"y1": label[1], |
|
"x2": label[2], |
|
"y2": label[3], |
|
"x3": label[4], |
|
"y3": label[5], |
|
"x4": label[6], |
|
"y4": label[7], |
|
"transcript": label[8], |
|
} |
|
for label in labels |
|
], |
|
}, |
|
} |
|
|