|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import conllu |
|
import datasets |
|
|
|
from seacrowd.sea_datasets.vndt.utils import parse_token_and_impute_metadata |
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import (load_ud_data, |
|
load_ud_data_as_seacrowd_kb) |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@InProceedings{Nguyen2014NLDB, |
|
author = {Nguyen, Dat Quoc and Nguyen, Dai Quoc and Pham, Son Bao and Nguyen, Phuong-Thai and Nguyen, Minh Le}, |
|
title = {{From Treebank Conversion to Automatic Dependency Parsing for Vietnamese}}, |
|
booktitle = {{Proceedings of 19th International Conference on Application of Natural Language to Information Systems}}, |
|
year = {2014}, |
|
pages = {196-207}, |
|
url = {https://github.com/datquocnguyen/VnDT}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "vndt" |
|
|
|
_DESCRIPTION = """\ |
|
VnDT is a Vietnamese dependency treebank, consisting of 10K+ sentences (219k words). The VnDT Treebank is automatically |
|
converted from the input Vietnamese Treebank. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/datquocnguyen/VnDT" |
|
|
|
_LANGUAGES = {"vie": "vi"} |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"gold-dev": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-dev.conll", |
|
"gold-test": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-test.conll", |
|
"gold-train": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-train.conll", |
|
"predicted-dev": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-dev.conll", |
|
"predicted-test": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-test.conll", |
|
"predicted-train": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-train.conll", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
class VnDTDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
VnDT is a Vietnamese dependency treebank from https://github.com/datquocnguyen/VnDT. |
|
""" |
|
|
|
|
|
conllu.parse_token_and_metadata = parse_token_and_impute_metadata |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_gold_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} gold standard source schema", |
|
schema="source", |
|
subset_id="gold", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_gold_seacrowd_kb", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} gold standard SEACrowd schema", |
|
schema="seacrowd_kb", |
|
subset_id="gold", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_predicted_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} predicted source schema", |
|
schema="source", |
|
subset_id="predicted", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_predicted_seacrowd_kb", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} predicted SEACrowd schema", |
|
schema="seacrowd_kb", |
|
subset_id="predicted", |
|
), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Sequence(datasets.Value("int8")), |
|
"form": datasets.Sequence(datasets.Value("string")), |
|
"lemma": datasets.Sequence(datasets.Value("string")), |
|
"upos": datasets.Sequence(datasets.Value("string")), |
|
"xpos": datasets.Sequence(datasets.Value("string")), |
|
"feats": datasets.Sequence(datasets.Value("string")), |
|
"head": datasets.Sequence(datasets.Value("int8")), |
|
"deprel": datasets.Sequence(datasets.Value("string")), |
|
"deps": datasets.Sequence(datasets.Value("string")), |
|
"misc": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_kb": |
|
features = schemas.kb_features |
|
else: |
|
raise ValueError(f"Invalid schema: '{self.config.schema}'") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
paths = {key: dl_manager.download_and_extract(value) for key, value in _URLS.items()} |
|
|
|
if self.config.subset_id == "gold": |
|
filtered_paths = {key: value for key, value in paths.items() if "gold" in key} |
|
elif self.config.subset_id == "predicted": |
|
filtered_paths = {key: value for key, value in paths.items() if "predicted" in key} |
|
else: |
|
raise NotImplementedError(f"Invalid subset: '{self.config.subset_id}'.") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": [value for key, value in filtered_paths.items() if "dev" in key], |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": [value for key, value in filtered_paths.items() if "test" in key], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": [value for key, value in filtered_paths.items() if "train" in key], |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths: Path, split: str) -> Tuple[int, Dict]: |
|
""" |
|
Yields examples as (key, example) tuples. |
|
""" |
|
|
|
dataset = None |
|
for file in filepaths: |
|
if self.config.schema == "source": |
|
dataset = list(load_ud_data(file)) |
|
elif self.config.schema == "seacrowd_kb": |
|
dataset = list(load_ud_data_as_seacrowd_kb(file, dataset)) |
|
else: |
|
raise ValueError(f"Invalid config: '{self.config.name}'") |
|
|
|
for idx, example in enumerate(dataset): |
|
if self.config.schema == "source": |
|
example.pop('sent_id', None) |
|
example.pop('text', None) |
|
yield idx, example |