holylovenia
commited on
Commit
•
1ff780a
1
Parent(s):
656cce4
Upload vndt.py with huggingface_hub
Browse files
vndt.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Dict, List, Tuple
|
18 |
+
|
19 |
+
import conllu
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from seacrowd.sea_datasets.vndt.utils import parse_token_and_impute_metadata
|
23 |
+
from seacrowd.utils import schemas
|
24 |
+
from seacrowd.utils.common_parser import (load_ud_data,
|
25 |
+
load_ud_data_as_seacrowd_kb)
|
26 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
27 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
28 |
+
|
29 |
+
_CITATION = """\
|
30 |
+
@InProceedings{Nguyen2014NLDB,
|
31 |
+
author = {Nguyen, Dat Quoc and Nguyen, Dai Quoc and Pham, Son Bao and Nguyen, Phuong-Thai and Nguyen, Minh Le},
|
32 |
+
title = {{From Treebank Conversion to Automatic Dependency Parsing for Vietnamese}},
|
33 |
+
booktitle = {{Proceedings of 19th International Conference on Application of Natural Language to Information Systems}},
|
34 |
+
year = {2014},
|
35 |
+
pages = {196-207},
|
36 |
+
url = {https://github.com/datquocnguyen/VnDT},
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
_DATASETNAME = "vndt"
|
41 |
+
|
42 |
+
_DESCRIPTION = """\
|
43 |
+
VnDT is a Vietnamese dependency treebank, consisting of 10K+ sentences (219k words). The VnDT Treebank is automatically
|
44 |
+
converted from the input Vietnamese Treebank.
|
45 |
+
"""
|
46 |
+
|
47 |
+
_HOMEPAGE = "https://github.com/datquocnguyen/VnDT"
|
48 |
+
|
49 |
+
_LANGUAGES = {"vie": "vi"}
|
50 |
+
|
51 |
+
_LICENSE = Licenses.UNKNOWN.value
|
52 |
+
|
53 |
+
_LOCAL = False
|
54 |
+
|
55 |
+
_URLS = {
|
56 |
+
"gold-dev": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-dev.conll",
|
57 |
+
"gold-test": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-test.conll",
|
58 |
+
"gold-train": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-train.conll",
|
59 |
+
"predicted-dev": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-dev.conll",
|
60 |
+
"predicted-test": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-test.conll",
|
61 |
+
"predicted-train": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-train.conll",
|
62 |
+
}
|
63 |
+
|
64 |
+
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING]
|
65 |
+
|
66 |
+
_SOURCE_VERSION = "1.0.0"
|
67 |
+
|
68 |
+
_SEACROWD_VERSION = "2024.06.20"
|
69 |
+
|
70 |
+
class VnDTDataset(datasets.GeneratorBasedBuilder):
|
71 |
+
"""
|
72 |
+
VnDT is a Vietnamese dependency treebank from https://github.com/datquocnguyen/VnDT.
|
73 |
+
"""
|
74 |
+
|
75 |
+
# Override conllu.parse_token_and_metadata via monkey patching
|
76 |
+
conllu.parse_token_and_metadata = parse_token_and_impute_metadata
|
77 |
+
|
78 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
79 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
80 |
+
|
81 |
+
BUILDER_CONFIGS = [
|
82 |
+
SEACrowdConfig(
|
83 |
+
name=f"{_DATASETNAME}_gold_source",
|
84 |
+
version=datasets.Version(_SOURCE_VERSION),
|
85 |
+
description=f"{_DATASETNAME} gold standard source schema",
|
86 |
+
schema="source",
|
87 |
+
subset_id="gold",
|
88 |
+
),
|
89 |
+
SEACrowdConfig(
|
90 |
+
name=f"{_DATASETNAME}_gold_seacrowd_kb",
|
91 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
92 |
+
description=f"{_DATASETNAME} gold standard SEACrowd schema",
|
93 |
+
schema="seacrowd_kb",
|
94 |
+
subset_id="gold",
|
95 |
+
),
|
96 |
+
SEACrowdConfig(
|
97 |
+
name=f"{_DATASETNAME}_predicted_source",
|
98 |
+
version=datasets.Version(_SOURCE_VERSION),
|
99 |
+
description=f"{_DATASETNAME} predicted source schema",
|
100 |
+
schema="source",
|
101 |
+
subset_id="predicted",
|
102 |
+
),
|
103 |
+
SEACrowdConfig(
|
104 |
+
name=f"{_DATASETNAME}_predicted_seacrowd_kb",
|
105 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
106 |
+
description=f"{_DATASETNAME} predicted SEACrowd schema",
|
107 |
+
schema="seacrowd_kb",
|
108 |
+
subset_id="predicted",
|
109 |
+
),
|
110 |
+
]
|
111 |
+
|
112 |
+
def _info(self) -> datasets.DatasetInfo:
|
113 |
+
if self.config.schema == "source":
|
114 |
+
features = datasets.Features(
|
115 |
+
{
|
116 |
+
"id": datasets.Sequence(datasets.Value("int8")),
|
117 |
+
"form": datasets.Sequence(datasets.Value("string")),
|
118 |
+
"lemma": datasets.Sequence(datasets.Value("string")),
|
119 |
+
"upos": datasets.Sequence(datasets.Value("string")),
|
120 |
+
"xpos": datasets.Sequence(datasets.Value("string")),
|
121 |
+
"feats": datasets.Sequence(datasets.Value("string")),
|
122 |
+
"head": datasets.Sequence(datasets.Value("int8")),
|
123 |
+
"deprel": datasets.Sequence(datasets.Value("string")),
|
124 |
+
"deps": datasets.Sequence(datasets.Value("string")),
|
125 |
+
"misc": datasets.Sequence(datasets.Value("string")),
|
126 |
+
}
|
127 |
+
)
|
128 |
+
elif self.config.schema == "seacrowd_kb":
|
129 |
+
features = schemas.kb_features
|
130 |
+
else:
|
131 |
+
raise ValueError(f"Invalid schema: '{self.config.schema}'")
|
132 |
+
|
133 |
+
return datasets.DatasetInfo(
|
134 |
+
description=_DESCRIPTION,
|
135 |
+
features=features,
|
136 |
+
homepage=_HOMEPAGE,
|
137 |
+
license=_LICENSE,
|
138 |
+
citation=_CITATION,
|
139 |
+
)
|
140 |
+
|
141 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
142 |
+
"""
|
143 |
+
Returns SplitGenerators.
|
144 |
+
"""
|
145 |
+
|
146 |
+
paths = {key: dl_manager.download_and_extract(value) for key, value in _URLS.items()}
|
147 |
+
|
148 |
+
if self.config.subset_id == "gold":
|
149 |
+
filtered_paths = {key: value for key, value in paths.items() if "gold" in key}
|
150 |
+
elif self.config.subset_id == "predicted":
|
151 |
+
filtered_paths = {key: value for key, value in paths.items() if "predicted" in key}
|
152 |
+
else:
|
153 |
+
raise NotImplementedError(f"Invalid subset: '{self.config.subset_id}'.")
|
154 |
+
|
155 |
+
return [
|
156 |
+
datasets.SplitGenerator(
|
157 |
+
name=datasets.Split.VALIDATION,
|
158 |
+
gen_kwargs={
|
159 |
+
"filepaths": [value for key, value in filtered_paths.items() if "dev" in key],
|
160 |
+
"split": "validation",
|
161 |
+
},
|
162 |
+
),
|
163 |
+
datasets.SplitGenerator(
|
164 |
+
name=datasets.Split.TEST,
|
165 |
+
gen_kwargs={
|
166 |
+
"filepaths": [value for key, value in filtered_paths.items() if "test" in key],
|
167 |
+
"split": "test",
|
168 |
+
},
|
169 |
+
),
|
170 |
+
datasets.SplitGenerator(
|
171 |
+
name=datasets.Split.TRAIN,
|
172 |
+
gen_kwargs={
|
173 |
+
"filepaths": [value for key, value in filtered_paths.items() if "train" in key],
|
174 |
+
"split": "train",
|
175 |
+
},
|
176 |
+
),
|
177 |
+
]
|
178 |
+
|
179 |
+
def _generate_examples(self, filepaths: Path, split: str) -> Tuple[int, Dict]:
|
180 |
+
"""
|
181 |
+
Yields examples as (key, example) tuples.
|
182 |
+
"""
|
183 |
+
|
184 |
+
dataset = None
|
185 |
+
for file in filepaths:
|
186 |
+
if self.config.schema == "source":
|
187 |
+
dataset = list(load_ud_data(file))
|
188 |
+
elif self.config.schema == "seacrowd_kb":
|
189 |
+
dataset = list(load_ud_data_as_seacrowd_kb(file, dataset))
|
190 |
+
else:
|
191 |
+
raise ValueError(f"Invalid config: '{self.config.name}'")
|
192 |
+
|
193 |
+
for idx, example in enumerate(dataset):
|
194 |
+
if self.config.schema == "source":
|
195 |
+
example.pop('sent_id', None)
|
196 |
+
example.pop('text', None)
|
197 |
+
yield idx, example
|