|
""" |
|
This new update refers to the this HF dataloader script |
|
https://huggingface.co/datasets/csebuetnlp/xlsum/blob/main/xlsum.py |
|
while conforming to SEACrowd schema |
|
""" |
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{valk2021slt, |
|
title={{VoxLingua107}: a Dataset for Spoken Language Recognition}, |
|
author={J{\"o}rgen Valk and Tanel Alum{\"a}e}, |
|
booktitle={Proc. IEEE SLT Workshop}, |
|
year={2021}, |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ceb", "ind", "jav", "khm", "lao", "zlm", "mya", "sun", "tha", "tgl", "vie", "war"] |
|
|
|
_LANG_TO_DATASOURCE_LANG = { |
|
"ceb": "ceb", |
|
"ind": "id", |
|
"jav": "jw", |
|
"khm": "km", |
|
"lao": "lo", |
|
"zlm": "ms", |
|
"mya": "my", |
|
"sun": "su", |
|
"tha": "th", |
|
"tgl": "tl", |
|
"vie": "vi", |
|
"war": "war"} |
|
|
|
_DATASETNAME = "voxlingua" |
|
|
|
_DESCRIPTION = """\ |
|
VoxLingua107 is a comprehensive speech dataset designed for training spoken language identification models. |
|
It comprises short speech segments sourced from YouTube videos, labeled based on the language indicated in the video |
|
title and description. The dataset covers 107 languages and contains a total of 6628 hours of speech data, |
|
averaging 62 hours per language. However, the actual amount of data per language varies significantly. |
|
Additionally, there is a separate development set consisting of 1609 speech segments from 33 languages, |
|
validated by at least two volunteers to ensure the accuracy of language representation. |
|
""" |
|
|
|
_HOMEPAGE = "https://bark.phon.ioc.ee/voxlingua107/" |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_URLS = "https://bark.phon.ioc.ee/voxlingua107/{identifier}.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_LANGUAGE_IDENTIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def construct_configs() -> List[SEACrowdConfig]: |
|
""" |
|
The function `construct_configs` constructs a list of SEACrowdConfig objects, and returns the list. |
|
|
|
output: |
|
a list of `SEACrowdConfig` objects. |
|
""" |
|
|
|
|
|
config_list = [] |
|
|
|
|
|
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS] |
|
TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK)) |
|
|
|
|
|
version, config_name_prefix = _SOURCE_VERSION, "source" |
|
config_list += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{config_name_prefix}", |
|
version=datasets.Version(version), |
|
description=f"{_DATASETNAME} {config_name_prefix} schema", |
|
schema=f"{config_name_prefix}", |
|
subset_id=f"{config_name_prefix}", |
|
) |
|
] |
|
|
|
|
|
version, config_name_prefix = _SEACROWD_VERSION, "seacrowd" |
|
for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS: |
|
config_list += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{config_name_prefix}_{config_name_suffix}", |
|
version=datasets.Version(version), |
|
description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name}", |
|
schema=f"{config_name_prefix}_{config_name_suffix}", |
|
subset_id=f"{config_name_prefix}_{config_name_suffix}", |
|
) |
|
] |
|
return config_list |
|
|
|
|
|
class VoxLinguaDataset(datasets.GeneratorBasedBuilder): |
|
"""Speech Lang ID on dataset VoxLingua.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = construct_configs() |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
|
|
|
|
features = datasets.Features({ |
|
"id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"labels": datasets.ClassLabel(names=_LANGUAGES)}) |
|
|
|
elif self.config.schema == "seacrowd_speech": |
|
features = schemas.speech_features(label_names=_LANGUAGES) |
|
|
|
else: |
|
raise ValueError(f"Unexpected self.config.schema of {self.config.schema}!") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
|
|
train_url_list = [_URLS.format(identifier=_LANG_TO_DATASOURCE_LANG[lang_val]) for lang_val in _LANGUAGES] |
|
train_data_dir = dl_manager.download_and_extract(train_url_list) |
|
|
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_data_dir, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: List[Path]) -> Tuple[int, Dict]: |
|
|
|
|
|
example_idx = -1 |
|
|
|
for idx, child_path in enumerate(filepath): |
|
|
|
|
|
|
|
first_level_rel_dir = os.listdir(child_path) |
|
expected_lang_label = _LANG_TO_DATASOURCE_LANG[_LANGUAGES[idx]] |
|
assert first_level_rel_dir == [expected_lang_label], f"The structure of path is unexpected! Expected {[expected_lang_label]} got: {first_level_rel_dir}" |
|
|
|
|
|
first_level_dir = os.path.join(child_path, first_level_rel_dir[0]) |
|
second_level_dir = os.listdir(first_level_dir) |
|
assert not all(os.path.isdir(expected_file) for expected_file in second_level_dir), f"Found directory within folder {first_level_dir}!" |
|
|
|
|
|
wav_files = [os.path.join(first_level_dir, file) for file in second_level_dir if file.endswith(".wav")] |
|
|
|
if self.config.schema == "source": |
|
for _fp in wav_files: |
|
example_idx += 1 |
|
ex = {"id": example_idx, "path": _fp, "audio": _fp, "labels": _LANGUAGES.index(expected_lang_label)} |
|
yield example_idx, ex |
|
|
|
elif self.config.schema == "seacrowd_speech": |
|
for _fp in wav_files: |
|
example_idx += 1 |
|
|
|
ex = { |
|
"id": example_idx, |
|
"path": _fp, |
|
"audio": _fp, |
|
"speaker_id": "", |
|
"labels": _LANGUAGES.index(expected_lang_label), |
|
"metadata": { |
|
|
|
"speaker_age": -1, |
|
"speaker_gender": "", |
|
}, |
|
} |
|
yield example_idx, ex |
|
|
|
else: |
|
raise ValueError(f"Invalid config schema of {self.config.schema}!") |
|
|