holylovenia
commited on
Commit
•
950e79e
1
Parent(s):
ae325f9
Upload wit.py with huggingface_hub
Browse files
wit.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import csv
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from seacrowd.utils import schemas
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@inproceedings{10.1145/3404835.3463257,
|
28 |
+
author = {Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc},
|
29 |
+
title = {WIT: Wikipedia-Based Image Text Dataset for Multimodal Multilingual Machine Learning},
|
30 |
+
year = {2021},
|
31 |
+
isbn = {9781450380379},
|
32 |
+
publisher = {Association for Computing Machinery},
|
33 |
+
address = {New York, NY, USA},
|
34 |
+
url = {https://doi.org/10.1145/3404835.3463257},
|
35 |
+
doi = {10.1145/3404835.3463257},
|
36 |
+
booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
|
37 |
+
pages = {2443–2449},
|
38 |
+
numpages = {7},
|
39 |
+
keywords = {dataset, multimodal, machine learning, wikipedia, multilingual, image-text retrieval, neural networks},
|
40 |
+
location = {Virtual Event, Canada},
|
41 |
+
series = {SIGIR '21}
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DATASETNAME = "wit"
|
46 |
+
|
47 |
+
_DESCRIPTION = """\
|
48 |
+
Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset.
|
49 |
+
WIT is composed of a curated set of 37.6 million entity rich image-text examples with
|
50 |
+
11.5 million unique images across 108 Wikipedia languages. There are more than 12k
|
51 |
+
examples in each of 108 languages, with 53 languages having 100k image-text pairs.
|
52 |
+
Nine languages are spoken in the Southeast Asian region.
|
53 |
+
Since the dataset contains multiple references, following Section 3.2 of the dataset's
|
54 |
+
paper, the `seacrowd_imtext` subsets specify which reference is used for each data
|
55 |
+
instance's texts via context in metadata.
|
56 |
+
"""
|
57 |
+
|
58 |
+
_HOMEPAGE = "https://github.com/google-research-datasets/wit"
|
59 |
+
|
60 |
+
_LANGUAGES = {"ceb": "ceb", "fil": "fil", "ind": "id", "jav": "jv", "zlm": "zlm", "mya": "my", "tha": "th", "vie": "vi", "war": "war"}
|
61 |
+
|
62 |
+
_LANGUAGE_CODES = list(_LANGUAGES.values())
|
63 |
+
|
64 |
+
_LICENSE = Licenses.CC_BY_SA_3_0.value
|
65 |
+
|
66 |
+
_LOCAL = False
|
67 |
+
|
68 |
+
_URLS = {
|
69 |
+
"train_0": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00000-of-00010.tsv.gz",
|
70 |
+
"train_1": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00001-of-00010.tsv.gz",
|
71 |
+
"train_2": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00002-of-00010.tsv.gz",
|
72 |
+
"train_3": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00003-of-00010.tsv.gz",
|
73 |
+
"train_4": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00004-of-00010.tsv.gz",
|
74 |
+
"train_5": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00005-of-00010.tsv.gz",
|
75 |
+
"train_6": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00006-of-00010.tsv.gz",
|
76 |
+
"train_7": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00007-of-00010.tsv.gz",
|
77 |
+
"train_8": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00008-of-00010.tsv.gz",
|
78 |
+
"train_9": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00009-of-00010.tsv.gz",
|
79 |
+
"test_0": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00000-of-00005.tsv.gz",
|
80 |
+
"test_1": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00001-of-00005.tsv.gz",
|
81 |
+
"test_2": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00002-of-00005.tsv.gz",
|
82 |
+
"test_3": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00003-of-00005.tsv.gz",
|
83 |
+
"test_4": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00004-of-00005.tsv.gz",
|
84 |
+
"val_0": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00000-of-00005.tsv.gz",
|
85 |
+
"val_1": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00001-of-00005.tsv.gz",
|
86 |
+
"val_2": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00002-of-00005.tsv.gz",
|
87 |
+
"val_3": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00003-of-00005.tsv.gz",
|
88 |
+
"val_4": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00004-of-00005.tsv.gz",
|
89 |
+
}
|
90 |
+
|
91 |
+
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING]
|
92 |
+
|
93 |
+
_SOURCE_VERSION = "1.0.0"
|
94 |
+
|
95 |
+
_SEACROWD_VERSION = "2024.06.20"
|
96 |
+
|
97 |
+
|
98 |
+
class WITDataset(datasets.GeneratorBasedBuilder):
|
99 |
+
"""
|
100 |
+
WIT is an image-text dataset from https://huggingface.co/datasets/google/wit.
|
101 |
+
"""
|
102 |
+
|
103 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
104 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
105 |
+
|
106 |
+
BUILDER_CONFIGS = (
|
107 |
+
[
|
108 |
+
SEACrowdConfig(
|
109 |
+
name=f"{_DATASETNAME}_source",
|
110 |
+
version=datasets.Version(_SOURCE_VERSION),
|
111 |
+
description=f"{_DATASETNAME} source schema for all 9 languages",
|
112 |
+
schema="source",
|
113 |
+
subset_id=f"{_DATASETNAME}",
|
114 |
+
)
|
115 |
+
]
|
116 |
+
+ [
|
117 |
+
SEACrowdConfig(
|
118 |
+
name=f"{_DATASETNAME}_seacrowd_imtext",
|
119 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
120 |
+
description=f"{_DATASETNAME} SEACrowd schema for all 9 languages",
|
121 |
+
schema="seacrowd_imtext",
|
122 |
+
subset_id=f"{_DATASETNAME}",
|
123 |
+
)
|
124 |
+
]
|
125 |
+
+ [
|
126 |
+
SEACrowdConfig(
|
127 |
+
name=f"{_DATASETNAME}_{lang}_source",
|
128 |
+
version=datasets.Version(_SOURCE_VERSION),
|
129 |
+
description=f"{_DATASETNAME}_{lang} source schema",
|
130 |
+
schema="source",
|
131 |
+
subset_id=f"{_DATASETNAME}_{lang}",
|
132 |
+
)
|
133 |
+
for lang in _LANGUAGES
|
134 |
+
]
|
135 |
+
+ [
|
136 |
+
SEACrowdConfig(
|
137 |
+
name=f"{_DATASETNAME}_{lang}_seacrowd_imtext",
|
138 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
139 |
+
description=f"{_DATASETNAME}_{lang} SEACrowd schema",
|
140 |
+
schema="seacrowd_imtext",
|
141 |
+
subset_id=f"{_DATASETNAME}_{lang}",
|
142 |
+
)
|
143 |
+
for lang in _LANGUAGES
|
144 |
+
]
|
145 |
+
)
|
146 |
+
|
147 |
+
def _info(self) -> datasets.DatasetInfo:
|
148 |
+
if self.config.schema == "source":
|
149 |
+
features = datasets.Features(
|
150 |
+
{
|
151 |
+
"language": datasets.Value("string"),
|
152 |
+
"page_url": datasets.Value("string"),
|
153 |
+
"image_url": datasets.Value("string"),
|
154 |
+
"page_title": datasets.Value("string"),
|
155 |
+
"section_title": datasets.Value("string"),
|
156 |
+
"hierarchical_section_title": datasets.Value("string"),
|
157 |
+
"caption_reference_description": datasets.Value("string"),
|
158 |
+
"caption_attribution_description": datasets.Value("string"),
|
159 |
+
"caption_alt_text_description": datasets.Value("string"),
|
160 |
+
"mime_type": datasets.Value("string"),
|
161 |
+
"original_height": datasets.Value("int32"),
|
162 |
+
"original_width": datasets.Value("int32"),
|
163 |
+
"is_main_image": datasets.Value("bool"),
|
164 |
+
"attribution_passes_lang_id": datasets.Value("bool"),
|
165 |
+
"page_changed_recently": datasets.Value("bool"),
|
166 |
+
"context_page_description": datasets.Value("string"),
|
167 |
+
"context_section_description": datasets.Value("string"),
|
168 |
+
}
|
169 |
+
)
|
170 |
+
elif self.config.schema == "seacrowd_imtext":
|
171 |
+
features = schemas.image_text_features()
|
172 |
+
else:
|
173 |
+
raise ValueError(f"Invalid schema: '{self.config.schema}'")
|
174 |
+
|
175 |
+
return datasets.DatasetInfo(
|
176 |
+
description=_DESCRIPTION,
|
177 |
+
features=features,
|
178 |
+
homepage=_HOMEPAGE,
|
179 |
+
license=_LICENSE,
|
180 |
+
citation=_CITATION,
|
181 |
+
)
|
182 |
+
|
183 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
184 |
+
"""
|
185 |
+
Returns SplitGenerators.
|
186 |
+
"""
|
187 |
+
|
188 |
+
train_paths = dl_manager.download_and_extract([v for k, v in _URLS.items() if "train" in k])
|
189 |
+
test_paths = dl_manager.download_and_extract([v for k, v in _URLS.items() if "test" in k])
|
190 |
+
val_paths = dl_manager.download_and_extract([v for k, v in _URLS.items() if "val" in k])
|
191 |
+
|
192 |
+
return [
|
193 |
+
datasets.SplitGenerator(
|
194 |
+
name=datasets.Split.TRAIN,
|
195 |
+
gen_kwargs={
|
196 |
+
"filepaths": train_paths,
|
197 |
+
"split": "train",
|
198 |
+
},
|
199 |
+
),
|
200 |
+
datasets.SplitGenerator(
|
201 |
+
name=datasets.Split.TEST,
|
202 |
+
gen_kwargs={
|
203 |
+
"filepaths": test_paths,
|
204 |
+
"split": "test",
|
205 |
+
},
|
206 |
+
),
|
207 |
+
datasets.SplitGenerator(
|
208 |
+
name=datasets.Split.VALIDATION,
|
209 |
+
gen_kwargs={
|
210 |
+
"filepaths": val_paths,
|
211 |
+
"split": "validation",
|
212 |
+
},
|
213 |
+
),
|
214 |
+
]
|
215 |
+
|
216 |
+
def _generate_examples(self, filepaths: Path, split: str) -> Tuple[int, Dict]:
|
217 |
+
"""
|
218 |
+
Yields examples as (key, example) tuples.
|
219 |
+
"""
|
220 |
+
subset_id = self.config.subset_id.split("_")
|
221 |
+
if len(subset_id) > 1:
|
222 |
+
language_list = subset_id[1]
|
223 |
+
if language_list in _LANGUAGES:
|
224 |
+
language_list = [_LANGUAGES[language_list]]
|
225 |
+
else:
|
226 |
+
language_list = _LANGUAGE_CODES
|
227 |
+
|
228 |
+
idx = 0
|
229 |
+
for file in filepaths:
|
230 |
+
with open(
|
231 |
+
file,
|
232 |
+
"r",
|
233 |
+
encoding="utf-8",
|
234 |
+
newline="",
|
235 |
+
) as f:
|
236 |
+
data = csv.DictReader(
|
237 |
+
f,
|
238 |
+
delimiter="\t",
|
239 |
+
quoting=csv.QUOTE_ALL,
|
240 |
+
)
|
241 |
+
if self.config.schema == "seacrowd_imtext":
|
242 |
+
for d in data:
|
243 |
+
if d["language"] in language_list:
|
244 |
+
text = None
|
245 |
+
context = None
|
246 |
+
if d["caption_reference_description"] != "":
|
247 |
+
text = d["caption_reference_description"]
|
248 |
+
context = "caption_reference_description"
|
249 |
+
elif d["caption_attribution_description"] != "":
|
250 |
+
text = d["caption_attribution_description"]
|
251 |
+
context = "caption_attribution_description"
|
252 |
+
else:
|
253 |
+
text = d["caption_alt_text_description"]
|
254 |
+
context = "caption_alt_text_description"
|
255 |
+
x = {
|
256 |
+
"id": idx,
|
257 |
+
"image_paths": [d["image_url"]],
|
258 |
+
"texts": text,
|
259 |
+
"metadata": {
|
260 |
+
"context": context,
|
261 |
+
"labels": None,
|
262 |
+
},
|
263 |
+
}
|
264 |
+
yield idx, x
|
265 |
+
idx += 1
|
266 |
+
|
267 |
+
elif self.config.schema == "source":
|
268 |
+
for d in data:
|
269 |
+
if d["language"] in language_list:
|
270 |
+
x = {k: v if v != "" and k in self.info.features else None for k, v in d.items()}
|
271 |
+
yield idx, x
|
272 |
+
idx += 1
|
273 |
+
else:
|
274 |
+
raise ValueError(f"Invalid schema: '{self.config.schema}'")
|