Datasets:

ArXiv:
License:
File size: 3,586 Bytes
50e04d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b968d47
50e04d5
 
 
b968d47
 
50e04d5
 
 
 
b968d47
50e04d5
b968d47
50e04d5
b968d47
50e04d5
b968d47
 
 
50e04d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

---
license: cc-by-4.0
language: 
- ind
- vie
pretty_name: Xed
task_categories: 
- aspect-based-sentiment-analysis
tags: 
- aspect-based-sentiment-analysis
---

This is the XED dataset. The dataset consists of emotion annotated movie subtitles
from OPUS. We use Plutchik's 8 core emotions to annotate. The data is multilabel.
The original annotations have been sourced for mainly English and Finnish, with the
rest created using annotation projection to aligned subtitles in 41 additional languages,
with 31 languages included in the final dataset (more than 950 lines of annotated subtitle
lines). The dataset is an ongoing project with forthcoming additions such as machine translated datasets.


## Languages

ind, vie

## Supported Tasks

Aspect Based Sentiment Analysis

## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/xed", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("xed", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("xed"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```

More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).


## Dataset Homepage

[https://github.com/Helsinki-NLP/XED](https://github.com/Helsinki-NLP/XED)

## Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

## Dataset License

Creative Commons Attribution 4.0 (cc-by-4.0)

## Citation

If you are using the **Xed** dataloader in your work, please cite the following:
```

@inproceedings{ohman2020xed,
  title={{XED}: A Multilingual Dataset for Sentiment Analysis and Emotion Detection},
  author={{"O}hman, Emily and P{`a}mies, Marc and Kajava, Kaisla and Tiedemann, J{"o}rg},
  booktitle={The 28th International Conference on Computational Linguistics (COLING 2020)},
  year={2020}
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}

```