|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{ohman2020xed, |
|
title={{XED}: A Multilingual Dataset for Sentiment Analysis and Emotion Detection}, |
|
author={{\"O}hman, Emily and P{`a}mies, Marc and Kajava, Kaisla and Tiedemann, J{\"o}rg}, |
|
booktitle={The 28th International Conference on Computational Linguistics (COLING 2020)}, |
|
year={2020} |
|
} |
|
""" |
|
_DATASETNAME = "xed" |
|
|
|
_DESCRIPTION = """\ |
|
This is the XED dataset. The dataset consists of emotion annotated movie subtitles |
|
from OPUS. We use Plutchik's 8 core emotions to annotate. The data is multilabel. |
|
The original annotations have been sourced for mainly English and Finnish, with the |
|
rest created using annotation projection to aligned subtitles in 41 additional languages, |
|
with 31 languages included in the final dataset (more than 950 lines of annotated subtitle |
|
lines). The dataset is an ongoing project with forthcoming additions such as machine translated datasets. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/Helsinki-NLP/XED" |
|
|
|
_LANGUAGES = ["ind", "vie"] |
|
|
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = {"ind": "https://raw.githubusercontent.com/Helsinki-NLP/XED/master/Projections/id-projections.tsv", "vie": "https://raw.githubusercontent.com/Helsinki-NLP/XED/master/Projections/vi-projections.tsv"} |
|
|
|
|
|
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class XEDDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
This is the XED dataset. The dataset consists of emotion annotated movie subtitles |
|
from OPUS. We use Plutchik's 8 core emotions to annotate. The data is multilabel. |
|
The original annotations have been sourced for mainly English and Finnish, with the |
|
rest created using annotation projection to aligned subtitles in 41 additional languages, |
|
with 31 languages included in the final dataset (more than 950 lines of annotated subtitle |
|
lines). The dataset is an ongoing project with forthcoming additions such as machine translated datasets. |
|
""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{LANG}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} {LANG} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{LANG}", |
|
) |
|
for LANG in _LANGUAGES |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{LANG}_seacrowd_text_multi", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} {LANG} SEACrowd schema", |
|
schema="seacrowd_text_multi", |
|
subset_id=f"{_DATASETNAME}_{LANG}", |
|
) |
|
for LANG in _LANGUAGES |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_ind_source" |
|
_LABELS = ["Anger", "Anticipation", "Disgust", "Fear", "Joy", "Sadness", "Surprise", "Trust"] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features({"Sentence": datasets.Value("string"), "Emotions": datasets.Sequence(feature=datasets.ClassLabel(names=self._LABELS))}) |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
features = schemas.text_multi_features(self._LABELS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
language = self.config.name.split("_")[1] |
|
|
|
if language in _LANGUAGES: |
|
data_path = Path(dl_manager.download_and_extract(_URLS[language])) |
|
else: |
|
data_path = [Path(dl_manager.download_and_extract(_URLS[language])) for language in _LANGUAGES] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_path, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
emotions_mapping = {1: "Anger", 2: "Anticipation", 3: "Disgust", 4: "Fear", 5: "Joy", 6: "Sadness", 7: "Surprise", 8: "Trust"} |
|
|
|
df = pd.read_csv(filepath, sep="\t", names=["Sentence", "Emotions"], index_col=None) |
|
df["Emotions"] = df["Emotions"].apply(lambda x: list(map(int, x.split(", ")))) |
|
df["Emotions"] = df["Emotions"].apply(lambda x: [emotions_mapping[emotion] for emotion in x]) |
|
|
|
for index, row in df.iterrows(): |
|
|
|
if self.config.schema == "source": |
|
example = row.to_dict() |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
|
|
example = { |
|
"id": str(index), |
|
"text": str(row["Sentence"]), |
|
"labels": row["Emotions"], |
|
} |
|
|
|
yield index, example |
|
|