|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
from os import walk |
|
import datasets |
|
import pickle |
|
from pathlib import Path |
|
|
|
|
|
|
|
_CITATION = """ |
|
@inproceedings{ |
|
dahal2022scotch, |
|
title={Scotch: A Semantic Code Search Engine for {IDE}s}, |
|
author={Samip Dahal and Adyasha Maharana and Mohit Bansal}, |
|
booktitle={Deep Learning for Code Workshop}, |
|
year={2022}, |
|
url={https://openreview.net/forum?id=rSxfCiOZk-c} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
Scotch is a dataset of about 19 million functions collected from open-source repositiories from GitHub with permissive licenses. Each function has its corresponding code context and about 4 million functions have corresponding docstrings. The dataset includes functions written in programming languages Python, Java, Javascript, and Go.""" |
|
|
|
|
|
_HOMEPAGE = "https://github.com/sdpmas/Scotch" |
|
|
|
|
|
_LICENSE = "The MIT License" |
|
|
|
|
|
|
|
|
|
languages=['python','javascript','java','go'] |
|
language_map={'python':'py','javascript':'js','go':'go','java':'java'} |
|
_URLs = {lang:f'https://scotchdata.s3.amazonaws.com/go.tar.gz' for lang in languages} |
|
_URLs['all']=_URLs.copy() |
|
|
|
|
|
|
|
class ScotchDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="all", version=VERSION, description="All available data with docstrings"), |
|
datasets.BuilderConfig(name="python", version=VERSION, description="Python data"), |
|
datasets.BuilderConfig(name="javascript", version=VERSION, description="Javascript data"), |
|
datasets.BuilderConfig(name="java", version=VERSION, description="Java data"), |
|
datasets.BuilderConfig(name="go", version=VERSION, description="Go data"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
|
|
|
|
features = datasets.Features( |
|
{ |
|
"repository_name": datasets.Value("string"), |
|
"function_path": datasets.Value("string"), |
|
"function_identifier": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"function": datasets.Value("string"), |
|
"docstring": datasets.Value("string"), |
|
"function_url": datasets.Value("string"), |
|
"context":datasets.Value("string"), |
|
"license":datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[self.config.name] |
|
print('this is the URL ********',my_urls) |
|
if isinstance(my_urls, str): |
|
my_urls = {self.config.name:my_urls} |
|
data_dir = [os.path.join(lang_dir,language_map[lang]) for lang,lang_dir in dl_manager.download_and_extract(my_urls).items()] |
|
filenames = next(walk(lang_dir), (None, None, []))[2] |
|
print('filenames are: ',filenames) |
|
|
|
print('items: ',dl_manager.download_and_extract(my_urls).items()) |
|
print('data_dir',data_dir) |
|
|
|
splitpaths={} |
|
for split in ['train','valid','test']: |
|
for lang_dir in data_dir: |
|
|
|
lang_split_files=sorted(Path(os.path.join(lang_dir,split)).glob('*.bin')) |
|
if not split in splitpaths: |
|
splitpaths[split]=lang_split_files |
|
else: |
|
splitpaths[split].extend(lang_split_files) |
|
print('split paths',splitpaths) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": splitpaths['train'], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": splitpaths['test'], |
|
"split": "test" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": splitpaths['valid'], |
|
"split": "valid", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, filepath,split |
|
): |
|
""" Yields examples as (key, example) tuples. """ |
|
count=-1 |
|
for i,filepath in enumerate(filepath): |
|
loaded_f=pickle.load(open(filepath,'rb')) |
|
for j, func in enumerate(loaded_f): |
|
count+=1 |
|
yield count,{ |
|
"repository_name": str(func['nwo']), |
|
"function_path":str(func['path']), |
|
"function_identifier": str(func['identifier']), |
|
"language": str(func['language']), |
|
"function": str(func['function']), |
|
"docstring": str(func['docstring']), |
|
"function_url": str(func['url']), |
|
"context":str(func['context']), |
|
"license":str(func['license']), |
|
} |
|
|
|
|