File size: 3,449 Bytes
5f25043
 
9299753
 
 
 
 
 
 
 
 
 
 
 
 
5f25043
 
9299753
 
 
 
5f25043
9299753
5f25043
9299753
5f25043
1964298
 
5f25043
 
 
 
 
 
 
 
 
9299753
 
 
1964298
 
 
 
 
9299753
 
1964298
873f5f2
9299753
873f5f2
4feb502
9299753
 
 
5f25043
9299753
5f25043
 
9299753
 
5f25043
9299753
5f25043
 
 
 
 
9299753
 
 
 
 
5f25043
 
 
ffd3951
5f25043
 
 
 
 
 
9299753
 
 
 
5f25043
 
9299753
5f25043
1964298
9299753
 
16ab230
dcd7e33
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""SQUAD: The Stanford Question Answering Dataset."""
import csv
import json

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """
@article{2016arXiv160605250R,
       author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
                 Konstantin and {Liang}, Percy},
        title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
      journal = {arXiv e-prints},
         year = 2016,
          eid = {arXiv:1606.05250},
        pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
       eprint = {1606.05250},
}
"""

_DESCRIPTION = """
Stanford Question Answering Dataset (SQuAD) is a reading comprehension 
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia 
articles, where the answer to every question is a segment of text, or span, 
from the corresponding reading passage, or the question might be unanswerable.
"""

train_url = "https://raw.githubusercontent.com/Sampson2016/test/master/train.csv?token=GHSAT0AAAAAABR4XKTH73T5VNFVZ3KS33FYYVQLQAA"

_URLS = {
    "train": train_url,
    "test": train_url,
}


class Demo2Config(datasets.BuilderConfig):

    def __init__(self, **kwargs):
        super(Demo2Config, self).__init__(**kwargs)


class Demo2(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        Demo2Config(
            name="plain_text",
            version=datasets.Version("1.0.0", ""),
            description="Plain text",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=['0', '1'])
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://rajpurkar.github.io/SQuAD-explorer/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            demo2 = csv.DictReader(f)
            for key, row in enumerate(demo2):
                yield key, {
                    "text": row['text'],
                    "label": row['label'],
                }