Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
Size:
< 1K
DOI:
Libraries:
Datasets
pandas
License:
File size: 3,774 Bytes
8a43903
85f1936
 
 
 
 
 
 
 
 
8a43903
85f1936
8a43903
 
 
 
 
 
 
 
 
 
 
 
 
 
9c34397
 
85f1936
8a43903
85f1936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
task_categories:
- image-classification
language:
- en
tags:
- Images
pretty_name: 'Material Classification Hands On '
size_categories:
- n<1K
dataset_info:
  config_name: plain_text
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': Brick
          '1': Metal
          '2': Paper
          '3': Plastic
          '4': Wood
  splits:
  - name: train
    num_examples: 120
  - name: test
    num_examples: 30¿
---
# Dataset Card for Material Classification

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://semillerocv.github.io/proyectos.html
- **Repository:** 
- **Paper:** 
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

The Material_classification_2U dataset consists of 150 256x256 colour images in 5 classes, with 30 images per class. There are 120 training images and 30 test images.

### Supported Tasks and Leaderboards

- `image-classification`: The goal of this task is to classify a given image into one of 5 classes.

### Languages

English 

## Dataset Structure

### Data Instances

A sample from the training set is provided below:

```
{
  'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x256>,
  'label': 1
}
```

### Data Fields

- image: A `PIL.Image.Image` object containing the 256x256 image. Note that when accessing the image column: `dataset['train']["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. 
- label: 0-4 with the following correspondence
        '0': Brick
        '1': Metal
        '2': Paper
        '3': Plastic
        '4': Wood

### Data Splits

Train and Test

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@TECHREPORT{
    author = {Brayan Sneider Sánchez, Dana Meliza Villamizar, Cesar Vanegas, Juan Jose Calderón},
    title = {Material Classification},
    institution = {Universidad Industrial de Santander},
    year = {2024}
}
```