--- size_categories: - n<1K source_datasets: - original task_categories: - image_segmentation task_ids: - semantic_segmentation - teeth_segmentation train-eval-index: - config: plain_text task: semantic_segmentation task_id: semantic_segmentation splits: train_split: train eval_split: test col_mapping: image: image label: image --- # Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net) - **Repository:** [https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net) - **Paper:** [Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing](https://dergipark.org.tr/tr/pub/dubited/issue/68307/950568) - **Leaderboard:** - **Point of Contact:** S.Serdar Helli ### Dataset Summary # Semantic-Segmentation-of-Teeth-in-Panoramic-X-ray-Image The aim of this study is automatic semantic segmentation and measurement total length of teeth in one-shot panoramic x-ray image by using deep learning method with U-Net Model and binary image analysis in order to provide diagnostic information for the management of dental disorders, diseases, and conditions. [***Github Link***](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net) ***Original Dataset For Only Images*** DATASET ref - H. Abdi, S. Kasaei, and M. Mehdizadeh, “Automatic segmentation of mandible in panoramic x-ray,” J. Med. Imaging, vol. 2, no. 4, p. 44003, 2015 [Link DATASET for only original images.](https://data.mendeley.com/datasets/hxt48yk462/1) ### Supported Tasks and Leaderboards ## Dataset Structure ### Data Instances An example of 'train' looks as follows. ``` { "image": X-ray Image , "label": Binary Image Segmentation Map } ``` ## Dataset Creation ### Source Data ***Original Dataset For Only Images*** DATASET ref - H. Abdi, S. Kasaei, and M. Mehdizadeh, “Automatic segmentation of mandible in panoramic x-ray,” J. Med. Imaging, vol. 2, no. 4, p. 44003, 2015 [Link DATASET for only original images.](https://data.mendeley.com/datasets/hxt48yk462/1) ### Annotations #### Annotation process The annotation was made manually. #### Who are the annotators? S.Serdar Helli ### Personal and Sensitive Information ## Considerations for Using the Data ### Other Known Limitations To Check Out: ***Original Dataset For Only Images*** DATASET ref - H. Abdi, S. Kasaei, and M. Mehdizadeh, “Automatic segmentation of mandible in panoramic x-ray,” J. Med. Imaging, vol. 2, no. 4, p. 44003, 2015 [Link DATASET for only original images.](https://data.mendeley.com/datasets/hxt48yk462/1) ## Additional Information ### Citation Information For Labelling ``` @article{helli10tooth, title={Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing}, author={HELL{\.I}, Serdar and HAMAMCI, Anda{\c{c}}}, journal={D{\"u}zce {\"U}niversitesi Bilim ve Teknoloji Dergisi}, volume={10}, number={1}, pages={39--50} } ``` For Original Images ``` @article{abdi2015automatic, title={Automatic segmentation of mandible in panoramic x-ray}, author={Abdi, Amir Hossein and Kasaei, Shohreh and Mehdizadeh, Mojdeh}, journal={Journal of Medical Imaging}, volume={2}, number={4}, pages={044003}, year={2015}, publisher={SPIE} } ``` ### Contributions Thanks to [@SerdarHelli](https://github.com/SerdarHelli) for adding this dataset.