File size: 9,625 Bytes
093f527 078dbbd 093f527 63566b7 078dbbd 63566b7 078dbbd 63566b7 078dbbd 63566b7 078dbbd 63566b7 078dbbd 63566b7 078dbbd 63566b7 078dbbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
license: cc-by-4.0
language:
- en
---
# Dataset Card for TimeIT
TimeIT encompasses 6 longstanding timestamp-related video tasks and incorporates 12 specific datasets derived from different domains.
## Dataset Description
- **Homepage: https://huggingface.co/datasets/ShuhuaiRen/TimeIT**
- **Repository: https://huggingface.co/datasets/ShuhuaiRen/TimeIT**
- **Paper: https://arxiv.org/abs/2312.02051**
- **Leaderboard:**
- **Point of Contact:**
## Dataset Statistics
Our dataset compiles diverse tasks of time-sensitive long video understanding, including Dense Video Captioning, Video Grounding, Video Summarization, Video Highlight Detection, Step Localization, Transcribed Speech Generation.
### Instruction Statistics
| Task | #Instructions |
|-------------------------------|---------------|
| Dense Video Captioning | 6 |
| Temporal Video Grounding | 6 |
| Video Summarization | 6 |
| Video Highlight Detection | 6 |
| Step Localization | 6 |
| Transcribed Speech Generation | 6 |
| Total | 36 |
### Task Statistics
| Task | Description | #Train |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|
| Dense Video Captioning | detects a series of events in the given video and outputs the corresponding timestamps and descriptions | 16,342 |
| Temporal Video Grounding | predict a timestamp boundary including the start and end time in the video given a natural language query | 60,471 |
| Video Summarization | create a compressed set of frames or clip shots to represent the most informative content of the given video | 75 |
| Video Highlight Detection | identify the most exciting, impressive, or emotional moments that may not cover the full scope of the original video | 6,858 |
| Step Localization | segment and describe significant steps in a long untrimmed video | 9,488 |
| Transcribed Speech Generation | predict the speech content and its corresponding start and end timestamps based on visual signals in the video | 31,627 |
| Total | - | 124861 |
### Detailed Dataset Statistics
| Task | Dataset | #Train |
|-------------------------------|------------------------|--------|
| Dense Video Captioning | `ActivityNet Captions` | 10,009 |
| | `ViTT` | 5,141 |
| | `YouCook2` | 1,192 |
| Temporal Video Grounding | `DiDeMo` | 33,002 |
| | `QuerYD` | 14,602 |
| | `HiREST_grounding` | 459 |
| | `Charades-STA` | 12,408 |
| Video Summarization | `TVSum` | 50 |
| | `SumMe` | 25 |
| Video Highlight Detection | `QVHighlights` | 6,858 |
| Step Localization | `COIN` | 9,029 |
| | `HiREST_step` | 459 |
| Transcribed Speech Generation | `YT-Temporal` | 31,627 |
## Dataset Structure
### HuggingFace Login (Optional)
```python
# OR run huggingface-cli login
from huggingface_hub import login
hf_token = "hf_xxx" # TODO: set a valid HuggingFace access token for loading datasets/models
login(token=hf_token)
```
### Data Loading
```python
from datasets import load_dataset
ds_name = "youcook2" # change the dataset name here
dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
```
### Data Splits
```python
from datasets import load_dataset
ds_name = "youcook2" # change the dataset name here
dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
train_set = dataset["train"]
```
### Data Instances
```python
from datasets import load_dataset
from io import BytesIO
from base64 import b64decode
from PIL import Image
ds_name = "youcook2" # change the dataset name here
dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
train_set = dataset["train"]
for train_instance in train_set:
question = train_instance["question"] # str
answer = train_instance["answer"] # str
video_path = train_instance["video_path"] # str
```
### Data Fields
```python
import datasets
features = datasets.Features(
{
"video_path": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
```
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
| Task | Dataset [Citation] | Source |
|-------------------------------|----------------------------|--------------------------------------------------------------------------------|
| Dense Video Captioning | `ActivityNet Captions` [1] | [Source](https://cs.stanford.edu/people/ranjaykrishna/densevid/) |
| | `ViTT` [2] | [Source](https://github.com/google-research-datasets/Video-Timeline-Tags-ViTT) |
| | `YouCook2` [3] | [Source](http://youcook2.eecs.umich.edu/) |
| Temporal Video Grounding | `DiDeMo` [4] | [Source](https://github.com/LisaAnne/TemporalLanguageRelease) |
| | `QuerYD` [5] | [Source](https://www.robots.ox.ac.uk/~vgg/data/queryd/) |
| | `HiREST_grounding` [6] | [Source](https://hirest-cvpr2023.github.io/) |
| | `Charades-STA` [7] | [Source](https://github.com/jiyanggao/TALL) |
| Video Summarization | `TVSum` [8] | [Source](https://github.com/yalesong/tvsum) |
| | `SumMe` [9] | [Source](http://classif.ai/dataset/ethz-cvl-video-summe/) |
| Video Highlight Detection | `QVHighlights` [10] | [Source](https://github.com/jayleicn/moment_detr/tree/main/data) |
| Step Localization | `COIN` [11] | [Source](https://coin-dataset.github.io/) |
| | `HiREST_step` [6] | [Source](https://hirest-cvpr2023.github.io/) |
| Transcribed Speech Generation | `YT-Temporal` [12] | [Source](https://rowanzellers.com/merlot/#data) |
### Annotations
#### Annotation process
To build high-quality multimodal instruction datasets,
we rewrite various datasets into multimodal-to-text dialog format.
The annotation process includes four steps:
- (1) **Stage I: Instruction Writing**: writing instructions for each task;
- (2) **Stage II: Data Format Unification**: structuring images and texts into a unified schema;
- (3) **Stage III: Quality Check**: checking the overall dataset quality;
- (4) **Stage IV: Key Datasets Translation**: building multilingual sets.
#### Who are the annotators?
Three authors of this work are employed as human annotators,
each of whom is a graduate student familiar with relevant literature.
## Additional Information
### Licensing Information
The content of original dataset follows their original license.
We suggest that for the task with Unknown/Custom license, the user can check the original project or contact the dataset owner for detailed license information.
Our annotated instruction data is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).
### Citation Information
```bibtex
@article{Ren2023TimeChatAT,
title={TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding},
author={Shuhuai Ren and Linli Yao and Shicheng Li and Xu Sun and Lu Hou},
journal={ArXiv},
year={2023},
volume={abs/2312.02051},
}
```
### Contributions
TimeIT is a video-centric instruction-tuning dataset involving timestamps.
designed to enable the development of general-purpose video agents.
## References
- [1] Dense-Captioning Events in Videos
- [2] Multimodal Pretraining for Dense Video Captioning
- [3] Towards Automatic Learning of Procedures from Web Instructional Videos
- [4] Localizing Moments in Video with Natural Language
- [5] QuerYD: A video dataset with high-quality text and audio narrations
- [6] Hierarchical Video-Moment Retrieval and Step-Captioning
- [7] TALL: Temporal Activity Localization via Language Query
- [8] TVSum: Summarizing Web Videos Using Titles
- [9] Creating Summaries from User Videos
- [10] QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries
- [11] COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis
- [12] MERLOT: Multimodal Neural Script Knowledge Models |