File size: 9,717 Bytes
dda7ec8 7457806 dda7ec8 7457806 dda7ec8 7457806 dda7ec8 7457806 dda7ec8 7457806 dda7ec8 7457806 dda7ec8 7457806 dda7ec8 7457806 dda7ec8 7457806 dda7ec8 caff49b 7457806 dda7ec8 7457806 dda7ec8 7457806 dda7ec8 15c8cf6 caff49b dda7ec8 bc37e6a dda7ec8 1f75968 dda7ec8 1f75968 dda7ec8 e700525 dda7ec8 07ce4d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# dataset loading script
# import os
# import csv
import json
import random
import datasets
# from typing import List
_DESCRIPTION = """\
A video-centric instruction-tuning dataset involving timestamps for Video Large Language Models
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/RenShuhuai-Andy/TimeChat"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_SEED = 1234 # for determinstic random sampling
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"charades": {
"train": "./data/temporal_video_grounding/charades/instruct_tvg_12.4k_charades.json",
"instruction": "./data/temporal_video_grounding/temporal_video_grounding_instructions.json",
},
"didemo": {
"train": "./data/temporal_video_grounding/didemo/instruct_tvg_33.0k_didemo.json",
"instruction": "./data/temporal_video_grounding/temporal_video_grounding_instructions.json",
},
"queryd": {
"train": "./data/temporal_video_grounding/queryd/instruct_tvg_14.6k_queryd.json",
"instruction": "./data/temporal_video_grounding/temporal_video_grounding_instructions.json",
},
"hirest_grounding": {
"train": "./data/temporal_video_grounding/hirest/instruct_tvg_0.5k_hirest.json",
"instruction": "./data/temporal_video_grounding/temporal_video_grounding_instructions.json",
},
"qvhighlights": {
"train": "./data/video_highlight_detection/qvhighlights/instruct_vhd_6.9k_qvhighlights.json",
"instruction": "./data/video_highlight_detection/video_highlight_detection_instructions.json",
},
"youcook2": {
"train": "./data/dense_video_captioning/youcook2/instruct_dvc_1.2k_youcook2.json",
"instruction": "./data/dense_video_captioning/dense_video_captioning_instructions.json",
},
"anet": {
"train": "./data/dense_video_captioning/anet/instruct_dvc_10.0k_anet.json",
"instruction": "./data/dense_video_captioning/dense_video_captioning_instructions.json",
},
"vitt": {
"train": "./data/dense_video_captioning/vitt/instruct_dvc_5.1k_vitt.json",
"instruction": "./data/dense_video_captioning/dense_video_captioning_instructions.json",
},
"tvsum": {
"train": "./data/video_summarization/tvsum/instruct_vhd_50_tvsum.json",
"instruction": "./data/video_summarization/video_summarization_instructions.json",
},
"summe": {
"train": "./data/video_summarization/summe/instruct_vhd_25_summe.json",
"instruction": "./data/video_summarization/video_summarization_instructions.json",
},
"coin": {
"train": "./data/step_localization/coin/instruct_action_9.0k_coin.json",
"instruction": "./data/step_localization/step_localization_instructions.json",
},
"hirest_step": {
"train": "./data/step_localization/hirest_step/instruct_action_0.5k_hirest.json",
"instruction": "./data/step_localization/step_localization_instructions.json",
},
"yttemporal": {
"train": "./data/transcribed_speech_generation/yttemporal/instruct_tsg_31.6k_yttemporal.json",
"instruction": "./data/transcribed_speech_generation/transcribed_speech_generation_instructions.json",
},
}
_CITATION = ""
class TimeITDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.1")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="charades", version=VERSION, description="Charades-STA dataset for Temporal Video Grounding"
),
datasets.BuilderConfig(
name="didemo", version=VERSION, description="DiDeMo dataset for Temporal Video Grounding"
),
datasets.BuilderConfig(
name="queryd", version=VERSION, description="QuerYD dataset for Temporal Video Grounding"
),
datasets.BuilderConfig(
name="hirest_grounding", version=VERSION, description="HiREST_grounding dataset for Temporal Video Grounding"
),
datasets.BuilderConfig(
name="qvhighlights", version=VERSION, description="QVHighlights dataset for Video Highlight Detection"
),
datasets.BuilderConfig(
name="youcook2", version=VERSION, description="YouCook2 dataset for Dense Video Captioning"
),
datasets.BuilderConfig(
name="anet", version=VERSION, description="ActivityNet Captions dataset for Dense Video Captioning"
),
datasets.BuilderConfig(
name="vitt", version=VERSION, description="ViTT dataset for Dense Video Captioning"
),
datasets.BuilderConfig(
name="tvsum", version=VERSION, description="TVSum dataset for Video Summarization"
),
datasets.BuilderConfig(
name="summe", version=VERSION, description="SumMe dataset for Video Summarization"
),
datasets.BuilderConfig(
name="coin", version=VERSION, description="COIN dataset for Step Localization"
),
datasets.BuilderConfig(
name="hirest_step", version=VERSION, description="HiREST_step dataset for Step Localization"
),
datasets.BuilderConfig(
name="yttemporal", version=VERSION, description="YT-Temporal dataset for Transcribed Speech Generation"
),
]
DEFAULT_CONFIG_NAME = "youcook2" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# unified schema
features = datasets.Features(
{
"video_path": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls) # a dict string
ret = []
# control the choice of the instruction
random.seed(_SEED)
ret.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
"instruction_path": data_dir["instruction"],
"data_dir": data_dir,
},
)
)
return ret
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split, instruction_path, data_dir=None):
# print("instruction path: ", instruction_path)
instructions = json.load(open(instruction_path))
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
timeitdata = json.load(open(filepath))
for i, d in enumerate(timeitdata):
yield i, {
"question": d["QA"][0]['q'],
"answer": d["QA"][0]['a'],
"video_path": d["video"],
}
|