Datasets:

Languages:
English
ArXiv:
License:
TimeIT / TimeIT.py
ShuhuaiRen's picture
Upload TimeIT.py
1f75968
raw
history blame
8.96 kB
# dataset loading script
# import os
# import csv
import json
import random
import datasets
# from typing import List
_DESCRIPTION = """\
A video-centric instruction-tuning dataset involving timestamps for Video Large Language Models
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/RenShuhuai-Andy/TimeChat"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_SEED = 1234 # for determinstic random sampling
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"charades": {
"train": "./data/temporal_video_grounding/charades/instruct_tvg_12.4k_charades.json",
"instruction": "",
},
"didemo": {
"train": "./data/temporal_video_grounding/didemo/instruct_tvg_33.0k_didemo.json",
"instruction": "",
},
"queryd": {
"train": "./data/temporal_video_grounding/queryd/instruct_tvg_14.6k_queryd.json",
"instruction": "",
},
"hirest_grounding": {
"train": "./data/temporal_video_grounding/hirest/instruct_tvg_0.5k_hirest.json",
"instruction": "",
},
"qvhighlights": {
"train": "./data/video_highlight_detection/qvhighlights/instruct_vhd_6.9k_qvhighlights.json",
"instruction": "",
},
"youcook2": {
"train": "./data/dense_video_captioning/youcook2/instruct_dvc_1.2k_youcook2.json",
"instruction": "",
},
"anet": {
"train": "./data/dense_video_captioning/anet/instruct_dvc_10.0k_anet.json",
"instruction": "",
},
"vitt": {
"train": "./data/dense_video_captioning/vitt/instruct_dvc_5.1k_vitt.json",
"instruction": "",
},
"tvsum": {
"train": "./data/video_summarization/tvsum/instruct_vhd_50_tvsum.json",
"instruction": "",
},
"summe": {
"train": "./data/video_summarization/summe/instruct_vhd_50_tvsum.json",
"instruction": "",
},
"coin": {
"train": "./data/step_localization/coin/instruct_action_9.0k_coin.json",
"instruction": "",
},
"hirest_step": {
"train": "./data/step_localization/hirest_step/instruct_action_0.5k_hirest.json",
"instruction": "",
},
"yttemporal": {
"train": "./data/transcribed_speech_generation/yttemporal/instruct_tsp_31.6k_yttemporal.json",
"instruction": "",
},
}
_CITATION = ""
class TimeITDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.1")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="charades", version=VERSION, description="Charades-STA dataset for Temporal Video Grounding"
),
datasets.BuilderConfig(
name="didemo", version=VERSION, description="DiDeMo dataset for Temporal Video Grounding"
),
datasets.BuilderConfig(
name="queryd", version=VERSION, description="QuerYD dataset for Temporal Video Grounding"
),
datasets.BuilderConfig(
name="hirest_grounding", version=VERSION, description="HiREST_grounding dataset for Temporal Video Grounding"
),
datasets.BuilderConfig(
name="qvhighlights", version=VERSION, description="QVHighlights dataset for Video Highlight Detection"
),
datasets.BuilderConfig(
name="youcook2", version=VERSION, description="YouCook2 dataset for Dense Video Captioning"
),
datasets.BuilderConfig(
name="anet", version=VERSION, description="ActivityNet Captions dataset for Dense Video Captioning"
),
datasets.BuilderConfig(
name="vitt", version=VERSION, description="ViTT dataset for Dense Video Captioning"
),
datasets.BuilderConfig(
name="tvsum", version=VERSION, description="TVSum dataset for Video Summarization"
),
datasets.BuilderConfig(
name="summe", version=VERSION, description="SumMe dataset for Video Summarization"
),
datasets.BuilderConfig(
name="coin", version=VERSION, description="COIN dataset for Step Localization"
),
datasets.BuilderConfig(
name="hirest_step", version=VERSION, description="HiREST_step dataset for Step Localization"
),
datasets.BuilderConfig(
name="yttemporal", version=VERSION, description="YT-Temporal dataset for Transcribed Speech Generation"
),
]
DEFAULT_CONFIG_NAME = "youcook2" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# unified schema
features = datasets.Features(
{
"video": datasets.Value("string"),
"QA": datasets.Sequence(
{
"q": datasets.Value("string"),
"a": datasets.Value("string")
},
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls) # a dict string
ret = []
# control the choice of the instruction
random.seed(_SEED)
ret.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
"instruction_path": data_dir["instruction"],
"data_dir": data_dir,
},
)
)
return ret
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split, instruction_path, data_dir=None):
# print("instruction path: ", instruction_path)
instructions = json.load(open(instruction_path))
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
timeitdata = json.load(filepath)
for i, d in enumerate(timeitdata):
# yield i, {
# "question": d["QA"][0]['q'],
# "answer": d["QA"][0]['a'],
# "video_path": d["video"],
# }
# # print(d)
yield i, d