import json import argparse import os from copy import deepcopy import pdb import numpy as np import random from pathlib import Path from collections import Counter # read json files def read_json(path): with open(path, "r") as fin: datas = json.load(fin) annos = datas["annotations"] return annos def read_jsonl(path): anno = [] with open(path, "r") as fin: datas = fin.readlines() for data in datas: anno.append(json.loads(data.strip())) return anno def write_json(data, path): with open(path, "w") as fout: json.dump(data, fout) return def read_txt(path): data = [] with open(path, "r") as fin: lines = fin.readlines() for i, line in enumerate(lines): # e.g. AO8RW 0.0 6.9##a person is putting a book on a shelf. line = line.strip("\n") cap = line.split("##")[-1] if len(cap) < 2: continue terms = line.split("##")[0].split(" ") vid = terms[0] + ".mp4" start_time = float(terms[1]) end_time = float(terms[2]) data.append({"image_id": vid, "caption": cap, "timestamp": [start_time, end_time], "id": i}) return data def filter_sent(sent): sent = sent.strip(" ") if len(sent) < 2: return False sent = sent.replace("#", "") return sent if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dataset', default='qvhighlights') # anet parser.add_argument('--anno_path', default='annotations_raw/') parser.add_argument('--video_path', default='videos/') # ActivityNet_asr_denseCap/anet_6fps_224 parser.add_argument('--outpath', default='./') args = parser.parse_args() '''output data example: { "annotations": [ { "image_id": "3MSZA.mp4", "caption": "person turn a light on.", "timestamp": [24.3, 30.4], }], } ''' miss_videos = [] num_clips = [] for split in ["train", "val"]: # "val", "test" if args.dataset == "charades": filename = f"charades_sta_{split}.txt" annos = read_txt(os.path.join(args.anno_path, filename)) data = {} data["annotations"] = annos elif args.dataset == "qvhighlights": filename = f"highlight_{split}_release.jsonl" annos = read_jsonl(os.path.join(args.anno_path, filename)) new_data = [] for jterm in annos: new_term = {} new_term["image_id"] = "v_" + jterm["vid"] + ".mp4" # check the existance of the video if not os.path.exists(os.path.join(args.video_path, split, new_term["image_id"])): miss_videos.append(new_term["image_id"]) continue new_term["id"] = jterm["qid"] new_term["caption"] = jterm["query"] new_term["timestamp"] = jterm["relevant_windows"] new_term["duration"] = jterm["duration"] new_term["relevant_clip_ids"] = jterm["relevant_clip_ids"] new_term["saliency_scores"] = jterm["saliency_scores"] new_data.append(new_term) num_clips.append(int(jterm["duration"]/2)) data = {} data["annotations"] = new_data else: print("Do not support this dataset!") exit(0) print(f"==> {args.dataset} dataset \t# examples num: {len(new_data)} \t# miss videos num: {len(miss_videos)}\t# raw data num: {len(annos)}") out_name = "{}.caption_coco_format.json".format(split) Path(args.outpath).mkdir(parents=True, exist_ok=True) write_json(data, os.path.join(args.outpath, out_name)) if len(num_clips) >= 1: count = Counter(num_clips) # sort count dict with the clip num print(count) print(max(list(count.keys())))