Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
DOI:
File size: 1,302 Bytes
25673f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: apache-2.0
task_categories:
- question-answering
language:
- en
tags:
- TREC-RAG
- RAG
- MSMARCO
- MSMARCOV2.1
- Snowflake
- arctic
- arctic-embed
pretty_name: TREC-RAG-Embedding-Baseline
size_categories:
- 100M<n<1B
configs:
- config_name: corpus
data_files:
- split: train
path: corpus/*
---
# Snowflake Arctic Embed L Embeddings for MSMARCO V2.1 for TREC-RAG
This dataset contains the embeddings for the MSMARCO-V2.1 dataset which is used as the corpora for [TREC RAG](https://trec-rag.github.io/)
All embeddings are created using [Snowflake's Arctic Embed L](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) and are intended to serve as a simple baseline for dense retrieval-based methods.
## Loading the dataset
### Loading the document embeddings
You can either load the dataset like this:
```python
from datasets import load_dataset
docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train")
```
Or you can also stream it without downloading it before:
```python
from datasets import load_dataset
docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train", streaming=True)
for doc in docs:
doc_id = doc['_id']
title = doc['title']
header = doc['header']
text = doc['text']
emb = doc['emb']
```
|