spacemanidol commited on
Commit
a8ba8b1
1 Parent(s): 695641c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -10,17 +10,19 @@ tags:
10
  - MSMARCO
11
  - MSMARCOV2.1
12
  - Snowflake
 
 
13
  pretty_name: TREC-RAG-Embedding-Baseline
14
  size_categories:
15
  - 100M<n<1B
16
  configs:
17
- - config_name: "corpus"
18
  data_files:
19
  - split: train
20
  path: corpus/*
21
  ---
22
 
23
- # Embeddings for MSMARCO V2.1 for TREC-RAG
24
 
25
  This dataset contains the embeddings for the MSMARCO-V2.1 dataset which is used as the corpora for [TREC RAG](https://trec-rag.github.io/)
26
  All embeddings are created using [Snowflake's Arctic Embed L](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) and are intended to serve as a simple baseline for dense retrieval-based methods.
@@ -32,13 +34,13 @@ All embeddings are created using [Snowflake's Arctic Embed L](https://huggingfac
32
  You can either load the dataset like this:
33
  ```python
34
  from datasets import load_dataset
35
- docs = load_dataset("", split="train")
36
  ```
37
 
38
  Or you can also stream it without downloading it before:
39
  ```python
40
  from datasets import load_dataset
41
- docs = load_dataset("", split="train", streaming=True)
42
  for doc in docs:
43
  doc_id = doc['_id']
44
  title = doc['title']
 
10
  - MSMARCO
11
  - MSMARCOV2.1
12
  - Snowflake
13
+ - arctic
14
+ - arctic-embed
15
  pretty_name: TREC-RAG-Embedding-Baseline
16
  size_categories:
17
  - 100M<n<1B
18
  configs:
19
+ - config_name: corpus
20
  data_files:
21
  - split: train
22
  path: corpus/*
23
  ---
24
 
25
+ # Snowflake Arctic Embed L Embeddings for MSMARCO V2.1 for TREC-RAG
26
 
27
  This dataset contains the embeddings for the MSMARCO-V2.1 dataset which is used as the corpora for [TREC RAG](https://trec-rag.github.io/)
28
  All embeddings are created using [Snowflake's Arctic Embed L](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) and are intended to serve as a simple baseline for dense retrieval-based methods.
 
34
  You can either load the dataset like this:
35
  ```python
36
  from datasets import load_dataset
37
+ docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train")
38
  ```
39
 
40
  Or you can also stream it without downloading it before:
41
  ```python
42
  from datasets import load_dataset
43
+ docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train", streaming=True)
44
  for doc in docs:
45
  doc_id = doc['_id']
46
  title = doc['title']