import json import os import pyarrow as pa import pyarrow.parquet as pq import torch from tqdm import tqdm from transformers import AutoModel, AutoTokenizer file_name_prefix = "msmarco_v2.1_doc_segmented_" path = "/home/mltraining/msmarco_v2.1_doc_segmented/" model_names = [ "Snowflake/snowflake-arctic-embed-l", "Snowflake/snowflake-arctic-embed-m-v1.5", ] for model_name in model_names: print(f"Running doc embeddings using {model_name}") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained( model_name, add_pooling_layer=False, ) model.eval() device = "cuda" model = model.to(device) dir_path = f"{path}{model_name.split('/')[1]}/" if not os.path.exists(dir_path): os.makedirs(dir_path) for i in range(0, 59): try: filename = f"{path}{file_name_prefix}{i:02}.json" filename_out = f"{dir_path}{i:02}.parquet" print(f"Starting doc embeddings on {filename}") data = [] ids = [] with open(filename, "r") as f: for line in tqdm(f, desc="Processing JSONL file"): j = json.loads(line) doc_id = j["docid"] text = j["segment"] title = j["title"] heading = j["headings"] doc_text = "{} {}".format(title, text) data.append(doc_text) ids.append(doc_id) print("Documents fully loaded") batch_size = 512 chunks = [data[i: i + batch_size] for i in range(0, len(data), batch_size)] embds = [] for chunk in tqdm(chunks, desc="inference"): tokens = tokenizer( chunk, padding=True, truncation=True, return_tensors="pt", max_length=512, ).to(device) with torch.autocast( "cuda", dtype=torch.bfloat16 ), torch.inference_mode(): embds.append( model(**tokens)[0][:, 0] .cpu() .to(torch.float32) .detach() .numpy() ) del data, chunks embds = [item for batch in embds for item in batch] out_data = [] for emb, doc_id in zip(embds, ids): out_data.append({"doc_id": doc_id, "embedding": emb}) del embds, ids table = pa.Table.from_pylist(out_data) del out_data pq.write_table(table, filename_out) except Exception: pass