File size: 2,972 Bytes
31e3a75 ba448d8 31d6de7 6b0c99b 59c2767 b383829 59c2767 a0e9cec 59c2767 31d6de7 31e3a75 f37af87 9b16974 a6ed1f7 c5a40f8 a6ed1f7 31e3a75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
license: apache-2.0
task_categories:
- text-classification
- summarization
language:
- en
- de
configs:
- config_name: whisper_v1
data_files:
- split: train
path:
- "Dataset/whisper_v1/**/*.json"
field: segments
features:
- name: segments
sequence:
- name: segment_index
dtype: int
- name: start_time
dtype: float
- name: end_time
dtype: float
- name: transcribed_text
dtype: string
---
# SoccerNet-Echoes
Official repo for the paper: [SoccerNet-Echoes: A Soccer Game Audio Commentary Dataset](https://arxiv.org/abs/2405.07354).
## Dataset
Each folder inside the **Dataset** directory is categorized by league, season, and game. Within these folders, JSON files contain the transcribed and translated game commentary.
```python
π Dataset
βββ π whisper_v1
β βββ π england_epl
β β βββ π
2014-2015
β β β βββ β½ 2016-03-02 - 23-00 Liverpool 3 - 0 Manchester City
β β β βββ βοΈ 1_asr.json
β β β βββ βοΈ 2_asr.json
β β βββ π
2015-2016
β β βββ ...
β βββ π europe_uefa-champions-league
β βββ ...
βββ π whisper_v1_en
β βββ ...
βββ π whisper_v2
β βββ ...
βββ π whisper_v2_en
β βββ ...
βββ π whisper_v3
β βββ ...
whisper_v1: Contains ASR from Whisper v1.
whisper_v1_en: English-translated datasets from Whisper v1.
whisper_v2: Contains ASR from Whisper v2.
whisper_v2_en: English-translated datasets from Whisper v2.
whisper_v3: Contains ASR from Whisper v3.
```
Each JSON file has the following format:
```python
{
"segments": {
segment index (int):[
start time in second (float),
end time in second (float),
transcribed text from ASR
]
....
}
}
```
The top-level object is named segments.
It contains an object where each key represents a unique segment index (e.g., "0", "1", "2", etc.).
Each segment index object has the following properties:
```python
start_time: A number representing the starting time of the segment in seconds.
end_time: A number representing the ending time of the segment in seconds.
text: A string containing the textual content of the commentary segment.
```
## Citation
Please cite our work if you use the SoccerNet-Echoes dataset:
<pre><code>
@misc{gautam2024soccernetechoes,
title={SoccerNet-Echoes: A Soccer Game Audio Commentary Dataset},
author={Sushant Gautam and Mehdi Houshmand Sarkhoosh and Jan Held and Cise Midoglu and Anthony Cioppa and Silvio Giancola and Vajira Thambawita and Michael A. Riegler and PΓ₯l Halvorsen and Mubarak Shah},
year={2024},
eprint={2405.07354},
archivePrefix={arXiv},
primaryClass={cs.SD},
doi={10.48550/arXiv.2405.07354}
}
</code></pre> |