File size: 2,972 Bytes
31e3a75
 
 
 
 
 
 
 
ba448d8
31d6de7
 
 
 
 
6b0c99b
59c2767
b383829
59c2767
a0e9cec
59c2767
 
 
 
 
 
 
 
31d6de7
31e3a75
f37af87
 
9b16974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ed1f7
 
c5a40f8
 
a6ed1f7
 
 
 
 
 
 
 
 
 
 
31e3a75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: apache-2.0
task_categories:
- text-classification
- summarization
language:
- en
- de

configs:
  - config_name: whisper_v1
    data_files:
      - split: train
        path: 
          - "Dataset/whisper_v1/**/*.json"
    field: segments
    features:
      - name: segments
        sequence:
          - name: segment_index
            dtype: int
          - name: start_time
            dtype: float
          - name: end_time
            dtype: float
          - name: transcribed_text
            dtype: string

---
# SoccerNet-Echoes
Official repo for the paper: [SoccerNet-Echoes: A Soccer Game Audio Commentary Dataset](https://arxiv.org/abs/2405.07354).

## Dataset 
Each folder inside the **Dataset** directory is categorized by league, season, and game. Within these folders, JSON files contain the transcribed and translated game commentary.

```python


πŸ“‚ Dataset
β”œβ”€β”€ πŸ“ whisper_v1
β”‚   β”œβ”€β”€ πŸ† england_epl
β”‚   β”‚   β”œβ”€β”€ πŸ“… 2014-2015
β”‚   β”‚   β”‚   └── ⚽ 2016-03-02 - 23-00 Liverpool 3 - 0 Manchester City
β”‚   β”‚   β”‚       β”œβ”€β”€ ☁️ 1_asr.json
β”‚   β”‚   β”‚       └── ☁️ 2_asr.json
β”‚   β”‚   β”œβ”€β”€ πŸ“… 2015-2016
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ πŸ† europe_uefa-champions-league
β”‚   └── ...
β”œβ”€β”€ πŸ“ whisper_v1_en
β”‚   └── ...
β”œβ”€β”€ πŸ“ whisper_v2
β”‚   └── ...
β”œβ”€β”€ πŸ“ whisper_v2_en
β”‚   └── ...
β”œβ”€β”€ πŸ“ whisper_v3
β”‚   └── ...

whisper_v1: Contains ASR from Whisper v1.
whisper_v1_en: English-translated datasets from Whisper v1.
whisper_v2:  Contains ASR from Whisper v2.
whisper_v2_en:  English-translated datasets from Whisper v2.
whisper_v3: Contains ASR from Whisper v3.
```

Each JSON file has the following format:
```python

{
  "segments": {
    segment index (int):[
      start time in second (float),
      end time in second (float),
      transcribed text from ASR
    ]
    ....
  }
}
```
The top-level object is named segments.
It contains an object where each key represents a unique segment index (e.g., "0", "1", "2", etc.).
Each segment index object has the following properties:
```python
start_time: A number representing the starting time of the segment in seconds.
end_time: A number representing the ending time of the segment in seconds.
text: A string containing the textual content of the commentary segment.
```



## Citation
Please cite our work if you use the SoccerNet-Echoes dataset:

<pre><code>
@misc{gautam2024soccernetechoes,
      title={SoccerNet-Echoes: A Soccer Game Audio Commentary Dataset}, 
      author={Sushant Gautam and Mehdi Houshmand Sarkhoosh and Jan Held and Cise Midoglu and Anthony Cioppa and Silvio Giancola and Vajira Thambawita and Michael A. Riegler and PΓ₯l Halvorsen and Mubarak Shah},
      year={2024},
      eprint={2405.07354},
      archivePrefix={arXiv},
      primaryClass={cs.SD},
      doi={10.48550/arXiv.2405.07354}
}
</code></pre>