Datasets:

Modalities:
Image
Languages:
Chinese
ArXiv:
License:
File size: 2,503 Bytes
f600434
 
 
 
 
 
 
 
b651d09
f600434
 
 
 
 
 
 
ec2b152
2588dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
04ceb98
2588dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec2b152
 
 
 
 
 
 
2588dfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-nc-sa-4.0
task_categories:
- visual-question-answering
language:
- zh
tags:
- image
- alignment
pretty_name: AlignMMBench
size_categories:
- 1K<n<10K
---

# AlignMMBench: Evaluating Chinese Multimodal Alignment in Large Vision-Language Models

<font size=4><div align='center' > [[🍎 Project Page](https://alignmmbench.github.io/)] [[πŸ“– arXiv Paper](https://arxiv.org/pdf/2406.09295)] [[πŸ“Š Dataset](https://huggingface.co/datasets/THUDM/AlignMMBench)]  </div></font>

<p align="center">
    <img src="./assets/index.png" width="96%" height="50%">
</p>

---

## πŸ”₯ News

* **`2024.06.14`** 🌟 We released AlignMMBench, a comprehensive alignment benchmark for vision language models!


## πŸ‘€ Introduce to AlignMMBench

AlignMMBench is a multimodal alignment benchmark that encompasses both single-turn and multi-turn dialogue scenarios. It includes three categories and thirteen capability tasks, with a total of 4,978 question-answer pairs.

### Features

1. **High-Quality Annotations**: Reliable benchmark with meticulous human annotation and multi-stage quality control processes.

2. **Self Critic**: To improve the controllability of alignment evaluation, we introduce the CritiqueVLM, a ChatGLM3-6B based evaluator that has been rule-calibrated and carefully finetuned. With human judgements, its evaluation consistency surpasses that of GPT-4.
   
3. **Diverse Data**: Three categories and thirteen capability tasks, including both single-turn and multi-turn dialogue scenarios.

<img src="./assets/image_examples.png" width="100%" height="50%">


## πŸ“ˆ Results

<p align="center">
    <img src="./assets/leaderboard.png" width="96%" height="50%">
</p>

## License

The use of the dataset and the original videos is governed by the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International (CC BY-NC-SA 4.0) license, as detailed in the  [LICENSE](./LICENSE).

If you believe that any content in this dataset infringes on your rights, please contact us at **[email protected]** to request its
removal.

## Citation

If you find our work helpful for your research, please consider citing our work.

```bibtex
@misc{wu2024alignmmbench,
      title={AlignMMBench: Evaluating Chinese Multimodal Alignment in Large Vision-Language Models}, 
      author={Yuhang Wu and Wenmeng Yu and Yean Cheng and Yan Wang and Xiaohan Zhang and Jiazheng Xu and Ming Ding and Yuxiao Dong},
      year={2024},
      eprint={2406.09295},
      archivePrefix={arXiv}
}
```