File size: 9,788 Bytes
fad4353 84b69b4 fad4353 84b69b4 fad4353 84b69b4 fad4353 84b69b4 fad4353 4f7bf05 fad4353 84b69b4 fad4353 84b69b4 fad4353 7eb1362 fad4353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import pandas as pd
import json
import os
import datasets
from huggingface_hub import hf_hub_url
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@misc{xu2023imagereward,
title={ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation},
author={Jiazheng Xu and Xiao Liu and Yuchen Wu and Yuxuan Tong and Qinkai Li and Ming Ding and Jie Tang and Yuxiao Dong},
year={2023},
eprint={2304.05977},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
"""
# You can copy an official description
_DESCRIPTION = """\
We systematically identify the challenges for text-to-image human preference annotation, and \
consequently design a pipeline tailored for it, establishing criteria for quantitative assessment and \
annotator training, optimizing labeling experience, and ensuring quality validation. We build this \
text-to-image comparison dataset, ImageRewardDB, for training the ImageReward model based on the pipeline.\
The ImageRewarDB covers both the rating and ranking components, collecting a dataset of 137k expert \
comparisons to date.
"""
_HOMEPAGE = "https://huggingface.co/datasets/wuyuchen/ImageRewardDB"
_VERSION = datasets.Version("1.0.0")
_LICENSE = "apache-2.0"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_REPO_ID = "wuyuchen/ImageRewardDB"
_URLS = {}
_PART_IDS = {
"train": 32,
"validation": 2,
"test": 2
}
for name in list(_PART_IDS.keys()):
_URLS[name] = {}
for i in range(1, _PART_IDS[name]+1):
_URLS[name][i] = hf_hub_url(
_REPO_ID,
filename=f"images/{name}/{name}_{i}.zip",
repo_type="dataset"
)
_URLS[name]["metadata"] = hf_hub_url(
_REPO_ID,
filename=f"metadata-{name}.parquet",
repo_type="dataset"
)
class ImageRewardDBConfig(datasets.BuilderConfig):
'''BuilderConfig for ImageRewardDB'''
def __init__(self, part_ids, **kwargs):
'''BuilderConfig for ImageRewardDB
Args:
part_ids([int]): A list of part_ids.
**kwargs: keyword arguments forwarded to super
'''
super(ImageRewardDBConfig, self).__init__(version=_VERSION, **kwargs)
self.part_ids = part_ids
class ImageRewardDB(datasets.GeneratorBasedBuilder):
"""A dataset of 137k expert comparisons to date, demonstrating the text-to-image human preference."""
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = []
for num_k in [1,2,4,8]:
part_ids = {
"train": 4*num_k,
"validation": 2,
"test": 2
}
BUILDER_CONFIGS.append(
ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
)
DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
features = datasets.Features(
{
"image": datasets.Image(),
"prompt_id": datasets.Value("string"),
"prompt": datasets.Value("string"),
"classification": datasets.Value("string"),
"image_amount_in_total": datasets.Value("int8"),
"rank": datasets.Value("int8"),
"overall_rating": datasets.Value("int8"),
"image_text_alignment_rating": datasets.Value("int8"),
"fidelity_rating": datasets.Value("int8")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dirs = {name: [] for name in list(_PART_IDS.keys())}
json_paths = {name: [] for name in list(_PART_IDS.keys())}
metadata_paths = {name: [] for name in list(_PART_IDS.keys())}
for key in list(self.config.part_ids.keys()):
for i in range(1, self.config.part_ids[key]+1):
data_dir = dl_manager.download_and_extract(_URLS[key][i])
data_dirs[key].append(data_dir)
json_paths[key].append(os.path.join(data_dir, f"{key}_{i}.json"))
metadata_paths[key] = dl_manager.download(_URLS[key]["metadata"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"split": "train",
"data_dirs": data_dirs["train"],
"json_paths": json_paths["train"],
"metadata_path": metadata_paths["train"]
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"split": "validation",
"data_dirs": data_dirs["validation"],
"json_paths": json_paths["validation"],
"metadata_path": metadata_paths["validation"]
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"split": "test",
"data_dirs": data_dirs["test"],
"json_paths": json_paths["test"],
"metadata_path": metadata_paths["test"]
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, split, data_dirs, json_paths, metadata_path):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
num_data_dirs = len(data_dirs)
assert num_data_dirs == len(json_paths)
#Iterate throug all extracted zip folders for images
for index, json_path in enumerate(json_paths):
json_data = json.load(open(json_path, "r", encoding="utf-8"))
for example in json_data:
image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
yield example["image_path"], {
"image": {
"path": image_path,
"bytes": open(image_path, "rb").read()
},
"prompt_id": example["prompt_id"],
"prompt": example["prompt"],
"classification": example["classification"],
"image_amount_in_total": example["image_amount_in_total"],
"rank": example["rank"],
"overall_rating": example["overall_rating"],
"image_text_alignment_rating": example["image_text_alignment_rating"],
"fidelity_rating": example["fidelity_rating"]
} |